(redirected from Acetyloxy)
Also found in: Dictionary, Thesaurus, Medical, Wikipedia.
Related to Acetyloxy: Diester


any one of a group of organic compounds with general formula RCO2R′ (where R and R′ are alkyl groups or aryl groups) that are formed by the reaction between an alcohol and an acid. For example, when ethanol and acetic acid react, ethyl acetate (an ester) and water are formed; the reaction is called esterification. Ethyl acetateacetate
, one of the most important forms of artificial cellulose-based fibers; the ester of acetic acid. The first patents for the production of fibers from cellulose acetate appeared at the beginning of the 20th cent.
..... Click the link for more information.
 is used as a solvent. Methyl acetate, formed by the reaction between methanol and acetic acid, is a sweet-smelling liquid used in making perfumes, extracts, and lacquers. Esters react with water (hydrolysishydrolysis
, chemical reaction of a compound with water, usually resulting in the formation of one or more new compounds. The most common hydrolysis occurs when a salt of a weak acid or weak base (or both) is dissolved in water.
..... Click the link for more information.
) under basic conditions to form an alcohol and an acid. When heated with a hydroxide certain esters decompose to yield soap and glycerin; the process is called saponification. Common fats and oilsfats and oils,
group of organic substances that form an important part of the diet and also are useful in many industries. The fats are usually solid, the oils generally liquid at ordinary room temperatures.
..... Click the link for more information.
 are mixtures of various esters, such as stearinstearin
, fat that is the triglyceride of stearic acid, CH3(CH2)16CO2H, i.e., the tristearate ester of glycerol. It is a white crystalline solid at ordinary temperatures and is insoluble in water and very slightly soluble in alcohol.
..... Click the link for more information.
, palmitinpalmitin
, fat that is the triglyceride of palmitic acid, CH3(CH2)14CO2H, i.e., the tripalmitate ester of glycerol. It is a white crystalline solid at ordinary temperatures, insoluble in water but soluble in ethanol and ether.
..... Click the link for more information.
, and linolein, formed from the alcohol glycerolglycerol,
or 1,2,3-propanetriol
, CH2OHCHOHCH2OH, colorless, odorless, sweet-tasting, syrupy liquid. Glycerol is a trihydric alcohol. It melts at 17.
..... Click the link for more information.
 and fatty acidsfatty acid,
any of the organic carboxylic acids present in fats and oils as esters of glycerol. Molecular weights of fatty acids vary over a wide range. The carbon skeleton of any fatty acid is unbranched. Some fatty acids are saturated, i.e.
..... Click the link for more information.
. Naturally occurring esters of organic acids in fruits and flowers give them their distinctive odors. Esters perform important functions in the animal body; e.g., the ester acetylcholine is a chemical transmitter of nerve stimuli.



any of a number of organic compounds, such as C2H5OCOCH3 or C5H11ONO, that are derived from acids by replacing the hydroxyl group (OH) with an alcohol, enol, or phenol radical (OR).

Esters are structural analogues of the salts of oxygen acids, but where a metal atom would be attached to the salt, a hydrocarbon group (R) is attached to the ester. The nomenclature for the salts and esters is similar; for example, NaOCOCH3 is called sodium acetate, and C2H5OCOCH3 is known as ethyl acetate. Like salts, esters form products of incomplete and complete replacement with dibasic and multibasic acids; thus, there are acid esters, such as monomethylsulfate (HOSO2OCH3), and complete (neutral) esters, such as dimethylsulfate (CH3OSO2OCH3).

Esters differ greatly from salts in their properties, however. Typical organic compounds, esters are usually volatile liquids. In some instances, they have a fruity or flowery fragrance. Virtually insoluble in water, they are readily soluble in organic solvents. Esters are hydrolyzed by the action of water to form the corresponding alcohol and acid, in accordance with the general formula


The reaction is catalyzed by acids and even more so by bases. When alkaline catalysts are used, salts of acids are formed instead of free acids; the reaction is irreversible. Of the other reactions in which esters display acylating properties, the most common are transesterification, alcoholysis, and double exchange reactions. Some esters—for example, those formed by the lower aliphatic alcohols and such acids as sulfuric, trifluoroacetic, phosphoric, and phthalic acids—also have alkylating properties (seeDIMETHYL SULFATE and ).

Esters are usually obtained by esterification (see). They may also be formed by the acylation of alcohols by various acid derivatives (including acid halides and anhydrides), by the action of acid salts on alkyl halides, as in the reaction

C2H5I + AgONO → C2H5ONO + AgI

or by the action of acids on olefins, as in the reaction


Esters of glycerin and the higher carboxylic acids are the principal components of fats, and esters of the higher monohydric aliphatic alcohols and carboxylic acids are the main components of waxes. Other esters—mainly those of the terpene alcohols—are components of essential oils. Esters are used in technology as plastic monomers (acrylates and vinyl acetates), plasticizers for plastics (dioctyl and dibutyl phthalates), detergents (alkyl sulfates), solvents (amyl, butyl, and ethyl acetates), extraction agents and pesticides (esters of phosphoric acid), explosives (esters of nitric acid and polyhydric alcohols, such as nitroglycerin), pharmaceuticals (validol and aspirin), and fragrances (benzyl acetate and terpenyl acetate). Many esters of high molecular weight (including polyethylene terephthalate and cellulose acetates) are used in industry as plastics, lacquers, and synthetic fibers (seeALKYD RESINS and POLYESTER FIBER).


Nesmeianov, A. N., and N. A. Nesmeianov. Nachala organicheskoi khimii, books 1–2. Moscow, 1969–70.
Chichibabin, A. E. Osnovnye nachala organicheskoi khimii, 7th ed., vol. 1. Moscow, 1963.


(organic chemistry)
The compound formed by the elimination of water and the bonding of an alcohol and an organic acid.


Chem any of a class of compounds produced by reaction between acids and alcohols with the elimination of water. Esters with low molecular weights, such as ethyl acetate, are usually volatile fragrant liquids; fats are solid esters