antioxidant

(redirected from Anti-oxidant)
Also found in: Dictionary, Thesaurus, Medical, Acronyms, Wikipedia.

antioxidant,

substance that prevents or slows the breakdown of another substance by oxygen. Synthetic and natural antioxidants are used to slow the deterioration of gasoline and rubber, and such antioxidants as vitamin C (ascorbic acid), butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA) are added to foods (see food additivesfood additives,
substances added to foods by manufacturers to prevent spoilage or to enhance appearance, taste, texture, or nutritive value. By quantity, the most common food additives are flavorings, which include spices, vinegar, synthetic flavors, and, in the greatest
..... Click the link for more information.
) to prevent them from becoming rancid or from discoloring.

In the body, nutrients such as beta-carotene (a vitamin A precursor), vitamin C, vitamin E, and selenium have been found to act as antioxidants. They act by scavenging free radicalsfree radical,
in chemistry, a molecule or atom that contains an unpaired electron but is neither positively nor negatively charged. Free radicals are usually highly reactive and unstable. They are produced by homolytic cleavage of a covalent bond (see chemical bond); i.e.
..... Click the link for more information.
, molecules with one or more unpaired electrons, which rapidly react with other molecules, starting chain reactions in a process called oxidation. Free radicals are a normal product of metabolism; the body produces its own antioxidants (e.g., the enzyme superoxide dismutase) to keep them in balance. However, stress, aging, and environmental sources such as polluted air and cigarette smoke can add to the number of free radicals in the body, creating an imbalance. The highly reactive free radicals can damage healthy DNA and have been linked to changes that accompany aging (such as age-related macular degeneration, a leading cause of blindness in older people) and with disease processes that lead to cancer, heart disease, and stroke.

Studies have suggested that the antioxidants that occur naturally in fresh fruits and vegetables have a protective effect. For example, vitamin E and beta-carotene appear to protect cell membranes; vitamin C removes free radicals from inside the cell. There is still some question as to whether antioxidants in the form of dietary supplements counteract the effects of increased numbers of free radicals in the body. Some scientists believe that regular consumption of such supplements interferes with the body's own production of antioxidants.

Antioxidant

A substance that, when present at a lower concentration than that of the oxidizable substrate, significantly inhibits or delays oxidative processes, while being itself oxidized. In primary antioxidants, such as polyphenols, this antioxidative activity is implemented by the donation of an electron or hydrogen atom to a radical derivative, and in secondary antioxidants by the removal of an oxidative catalyst and the consequent prevention of the initiation of oxidation.

Antioxidants have diverse applications. They are used to prevent degradation in polymers, weakening in rubber and plastics, autoxidation and gum formation in gasoline, and discoloration of synthetic and natural pigments. They are used in foods, beverages, and cosmetic products to inhibit deterioration and spoilage. Interest is increasing in the application of antioxidants to medicine relating to human diseases attributed to oxidative stress.

The autoxidation process is shown in reactions (1), (2), and (3). Lipids,

(1) 
(2) 
(3) 
mainly those containing unsaturated fatty acids, such as linoleic acid [RH in reaction (1)], can undergo autoxidation via a free-radical chain reaction, which is unlikely to take place with atmospheric oxygen (ground state) alone. A catalyst (L) is required, such as light, heat, heavy-metal ions (copper or iron), or specific enzymes present in the biological system [reaction (1)]. The catalyst allows a lipid radical to be formed (alkyl radical R·) on a carbon atom next to the double bond of the unsaturated fatty acid. This radical is very unstable and reacts with oxygen [reaction (2)] to form a peroxyl radical (ROO·), which in turn can react with an additional lipid molecule to form a hydroperoxide [ROOH in reaction (3)] plus a new alkyl radical, and hence to start a chain reaction. Reactions (2) and (3), the propagation steps, continue unless a decay reaction takes place (a termination step), which involves the combination of two radicals to form stable products.

When lipid autoxidation occurs in food, it can cause deterioration, rancidity, bad odor, spoilage, reduction in nutritional value, and possibly the formation of toxic by-products. Oxidation stress in a lipid membrane in a biological system can alter its structure, affect its fluidity, and change its function, causing disease.

An antioxidant can eliminate potential initiators of oxidation and thus prevent reaction (1). It can also stop the process by donating an electron and reducing one of the radicals in reaction (2) or (3), thus halting the propagation steps. A primary antioxidant can be effective if it is able to donate an electron (or hydrogen atom) rapidly to a lipid radical and itself become more stable then the original radical. The ease of electron donation depends on the molecular structure of the antioxidant, which dictates the stability of the new radical. Many naturally occurring polyphenols, such as flavonoids, anthocyanins, and saponins, which can be found in wine, fruit, grain, vegetables, and almost all herbs and spices, are effective antioxidants that operate by this mechanism.

A secondary antioxidant can prevent reaction (1) from taking place by absorbing ultraviolet light, scavenging oxygen, chelating transition metals, or inhibiting enzymes involved in the formation of reactive oxygen species, for example, NADPH oxidase and xanthine oxidase (reducing molecular oxygen to superoxide and hydrogen peroxide), dopamine-β-hydroxylase, and lipoxygenases. The common principle of action in the above examples is the removal of the component acting as the catalyst that initiates and stimulates the free-radical chain reaction. See Enzyme

Among antioxidants, the synthetic compounds butylated hydroxyanisole (BHA), propyl gallate, ethoxyquin, and diphenylamine are commonly used as food additives. Quercetin belongs to a large natural group of antioxidants, the flavonoid family, with more than 6000 known members, many acting through both mechanisms described above. Ascorbic acid is an important water-soluble plasma antioxidant; it and the tocopherols, the main lipid soluble antioxidants, represent the antioxidants in biological systems. β-Carotene belongs to the carotenoid family, which includes lycopene, the red pigment in tomatoes; the family is known to be very effective in reacting with singlet oxygen (1O2), a highly energetic species of molecular oxygen. See Ascorbic acid, Carotenoid, Flavonoid

antioxidant

[‚an·tē′äk·sə·dənt]
(physical chemistry)
A substance that, when present at a lower concentration than that of the oxidizable substrate, significantly inhibits or delays oxidative processes, while being itself oxidized. In primary antioxidants, antioxidative activity is implemented by the donation of an electron or hydrogen atom to a radical derivative, and in secondary antioxidants by the removal of an oxidative catalyst and the consequent prevention of the initiation of oxidation. Antioxidants are used in polymers to prevent degradation, and in foods, beverages, and cosmetic products to inhibit deterioration and spoilage.

antioxidant

1. any substance that retards deterioration by oxidation, esp of fats, oils, foods, petroleum products, or rubber
2. Biology a substance, such as vitamin C, vitamin E, or beta carotene, that counteracts the damaging effects of oxidation in a living organism
References in periodicals archive ?
The scientists said dark chocolate had more anti-oxidants per gram than many other foodstuffs whose virtues were already recognised, such as red wine, green tea and berry fruits.
The bottom line is that you're going to get some anti-oxidants by drinking beer, but not at preventative levels.
Prior, tea's anti-oxidant activity is more potent than 22 other fruits and vegetables.
By simply turning the cap counter clockwise, the complex and flavors release into the water and prevents the oxidation that takes place with vitamins and anti-oxidants bottled in water sit on shelves in retail outlets.
Additionally he noted that in independent studies in humans, pretreatment of subjects with anti-oxidants (vitamin C and vitamin E) prior to exercise led to a loss in exercise's protective benefits for insulin resistance.
So the task was to find an anti-oxidant that stops that process.
Vitamin E's anti-oxidant is stronger when combined with lycopene, an ingredient in red fruits like pomegranate.
The most important group in this regard are the anti-oxidants, which are present in everything from fruit to a cup of tea.
Studies have also shown that people with higher than average intakes of anti-oxidants, beta-carotene, lutein and vitamins C and E, appear to have a reduced risk of developing cataracts.
But now, after a pioneering trip to the previously unmapped and unclimbed Lumntung Valley, 100km west of Kashmir, Mr Ainslie, 27, has discovered that taking anti-oxidants reduces the unpleasant effects of AMS.
Glutathione is the body's master anti-oxidant and people cannot live without it.
HOW IT WORKS: The ingredient Curcumin, found in Turmeric, is a powerful anti-oxidant which helps cells prevent damage caused by free-radicals by interfering with molecular pathways involved in cancer development, spread, and growth.