Antireflection Coating

(redirected from Anti-reflective coating)
Also found in: Dictionary, Medical, Acronyms, Wikipedia.

antireflection coating

[‚an·tē·ri′flek·shən ‚kōd·iŋ]
The application of a thin film of dielectric material to a surface to reduce its reflection and to increase its transmission of light or other electromagnetic radiation.

Antireflection Coating


the application of one or more nonabsorbing films to the surfaces of optical components in order to reduce the reflection coefficients of the surfaces. Without such antireflection films, light losses on reflection may be considerable. Thus, in the visible region of the spectrum—that is, for wavelengths λ between 400 and 700 nanometers (nm)—the losses can reach 10 percent of the intensity of the incident radiation even when the rays are at normal incidence to the boundary between the air and the optical medium (Figure 1). In systems with a large number of surfaces, such as compound lenses, the losses of light can exceed 70 percent. Repeated reflection from refracting surfaces causes scattered light to appear inside the instrument. As a result, the quality of the images formed by the optical system of the instrument deteriorates. These undesirable effects can be eliminated by the use of antireflection coatings, which is one of the most important applications of the optics of thin films.

Figure 1. Reflection coefficient R for light incident normally on an air-glass interface as a function of the refractive index ngl of the glass; R is calculated from Fresnel’s formulas

The action of an antireflection coating is due to the interference of the light reflected from the front and rear boundaries of the antireflection film. This interference results in the mutual extinction of the reflected light waves and, consequently, in an increase in the intensity of the transmitted light. At nearly normal angles of incidence, the antireflection effect is maximal if the thickness of the thin film is equal to an odd number of quarter wavelengths of the light in the film material and if the refractive index n2 of the film satisfies the equation Antireflection Coating where n1 and n3 are the refractive indexes of the media bordering the film. In actual practice, the first medium is often air. The greater the difference n3n2, the more strongly is the reflected light attenuated. If, however, n2 > n3, the interference of the rays reflected from the boundaries of the film increases the intensity of the reflected light (Figure 2).

By varying the thickness of the antireflection coating, the reflection minimum can be shifted to different regions of the spectrum. Coatings with minimum reflection in the yellow-green region (λ = 555 nm), which is the region of maximum sensitivity of the human eye, are applied to lenses used in black-and-white photography. In reflected light such surfaces have a purple tinge, hence the term “blue optics.” In coated lenses for color photography, the reflection is minimized in the blue region of the spectrum, and the surfaces have an amber tinge.

Figure 2. Reflection coefficient R as a function of the thickness of a thin film applied to a glass substrate for different values of the refractive index n2 of the film. The thickness is expressed in fractions of the wavelength λ of the light. The refractive index of the glass is n3 = 1.52, and the refractive index of air is n1 = 1.

For optical components made of glass with a low refractive index, coating with a single-layer film is not very effective. The use of two-layer antireflection coatings permits almost complete elimination of reflection from the surface of the substrate component in a narrow region of the spectrum, regardless of the component’s refractive index. If three-layer antireflection coatings are used, uniformly low (~0.5 percent) reflection can be obtained in a wide spectral region, for example, throughout the entire visible region (Figure 3). Two-layer and three-layer coatings are used in the ultraviolet, where single-layer coatings are

Figure 3. Reflection coefficient R of the surface of a glass with n3 = 1.52 in the visible region (400‣700 nm) as a function of the wavelength λ of the light: (1) for the uncoated surface, (2) for the surface with a single-layer antireflection coating of refractive index n2 = 1.40, (3) for the surface with a single-layer antireflection coating of refractive index n2 = 1.23, (4) for the surface with a three-layer antireflection coating

not very effective because of the small value of n3. In theory, the best antireflection coating for a wide region of the spectrum can be obtained through the use of inhomogeneous antireflection films whose refractive indexes vary smoothly from the n of the substrate to the n of the surrounding medium. In the inhomogeneous films obtained in practice, n varies stepwise. The width of the spectral region with low reflection increases with the number of steps; at the same time, the variation of the refractive index becomes smoother.


References in periodicals archive ?
a California-based solar energy company, today announced a strategic partnership for the distribution of XeroCoat's anti-reflective coating solutions in Japan and China.
In addition, Essilor of America named Davis Vision its 2007 Varilux Lab of the Year, and also honored the company with an award for 2007 Outstanding Performance in Crizal Anti-Reflective coatings.
The spin-on hardmask anti-reflective coating also effectively combines the etch mask functionality of a traditional CVD hardmask with the reflection control usually provided by an additional spin-on organic anti- reflectant.
The highly light-transmissive AMIRAN display case glass is known for its anti-reflective coating that reduces residual reflections to 1%.
Apparently, Ray Soneira of Display Mate Technologies has tested the anti-reflective coating and he finds it to be a note-worthy enhancement that elevates the iPad Air 2 above other tablets.
Managing director of BBGR (Independents), Nick Browning, commented: "Neva Max UV is a groundbreaking product that signals the next generation of anti-reflective coatings and, more importantly, it enables opticians to offer patients a new level of perceived value, packaged in an attractive consumer message.
and Berliner Glas KGaA, a European supplier of refined technical glass, have agreed to terms of a licensing deal for DSM's anti-reflective coating system, KhepriCoat[TM].
The 3:2 aspect ratio matches images captured by the camera, displaying shots without black borders, while wide viewing angles and an anti-reflective coating makes viewing images easy, even in bright sunlight.
As well as this clever advance, Fraunhofer scientists have also reduced the cost of applying these coatings: normally windshields get a toughening film, which is then improved with an additional anti-reflective coating.
The lens is made from a lightweight, impact-resistant polymer with an anti-reflective coating.
With a chronograph up to 12 hours, a 100m water resistant casing, sapphire crystals with anti-reflective coating, screw lock crowns and a stainless steel case, the new Sportura stands tall in terms of functionality.
It features a sapphire crystal with an anti-reflective coating and a choice of stainless steel bracelet or a black rubber strap.