antioxidant

(redirected from Antioxidant food)
Also found in: Dictionary, Thesaurus, Medical.

antioxidant,

substance that prevents or slows the breakdown of another substance by oxygen. Synthetic and natural antioxidants are used to slow the deterioration of gasoline and rubber, and such antioxidants as vitamin C (ascorbic acid), butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA) are added to foods (see food additivesfood additives,
substances added to foods by manufacturers to prevent spoilage or to enhance appearance, taste, texture, or nutritive value. By quantity, the most common food additives are flavorings, which include spices, vinegar, synthetic flavors, and, in the greatest
..... Click the link for more information.
) to prevent them from becoming rancid or from discoloring.

In the body, nutrients such as beta-carotene (a vitamin A precursor), vitamin C, vitamin E, and selenium have been found to act as antioxidants. They act by scavenging free radicalsfree radical,
in chemistry, a molecule or atom that contains an unpaired electron but is neither positively nor negatively charged. Free radicals are usually highly reactive and unstable. They are produced by homolytic cleavage of a covalent bond (see chemical bond); i.e.
..... Click the link for more information.
, molecules with one or more unpaired electrons, which rapidly react with other molecules, starting chain reactions in a process called oxidation. Free radicals are a normal product of metabolism; the body produces its own antioxidants (e.g., the enzyme superoxide dismutase) to keep them in balance. However, stress, aging, and environmental sources such as polluted air and cigarette smoke can add to the number of free radicals in the body, creating an imbalance. The highly reactive free radicals can damage healthy DNA and have been linked to changes that accompany aging (such as age-related macular degeneration, a leading cause of blindness in older people) and with disease processes that lead to cancer, heart disease, and stroke.

Studies have suggested that the antioxidants that occur naturally in fresh fruits and vegetables have a protective effect. For example, vitamin E and beta-carotene appear to protect cell membranes; vitamin C removes free radicals from inside the cell. There is still some question as to whether antioxidants in the form of dietary supplements counteract the effects of increased numbers of free radicals in the body. Some scientists believe that regular consumption of such supplements interferes with the body's own production of antioxidants.

Antioxidant

A substance that, when present at a lower concentration than that of the oxidizable substrate, significantly inhibits or delays oxidative processes, while being itself oxidized. In primary antioxidants, such as polyphenols, this antioxidative activity is implemented by the donation of an electron or hydrogen atom to a radical derivative, and in secondary antioxidants by the removal of an oxidative catalyst and the consequent prevention of the initiation of oxidation.

Antioxidants have diverse applications. They are used to prevent degradation in polymers, weakening in rubber and plastics, autoxidation and gum formation in gasoline, and discoloration of synthetic and natural pigments. They are used in foods, beverages, and cosmetic products to inhibit deterioration and spoilage. Interest is increasing in the application of antioxidants to medicine relating to human diseases attributed to oxidative stress.

The autoxidation process is shown in reactions (1), (2), and (3). Lipids,

(1) 
(2) 
(3) 
mainly those containing unsaturated fatty acids, such as linoleic acid [RH in reaction (1)], can undergo autoxidation via a free-radical chain reaction, which is unlikely to take place with atmospheric oxygen (ground state) alone. A catalyst (L) is required, such as light, heat, heavy-metal ions (copper or iron), or specific enzymes present in the biological system [reaction (1)]. The catalyst allows a lipid radical to be formed (alkyl radical R·) on a carbon atom next to the double bond of the unsaturated fatty acid. This radical is very unstable and reacts with oxygen [reaction (2)] to form a peroxyl radical (ROO·), which in turn can react with an additional lipid molecule to form a hydroperoxide [ROOH in reaction (3)] plus a new alkyl radical, and hence to start a chain reaction. Reactions (2) and (3), the propagation steps, continue unless a decay reaction takes place (a termination step), which involves the combination of two radicals to form stable products.

When lipid autoxidation occurs in food, it can cause deterioration, rancidity, bad odor, spoilage, reduction in nutritional value, and possibly the formation of toxic by-products. Oxidation stress in a lipid membrane in a biological system can alter its structure, affect its fluidity, and change its function, causing disease.

An antioxidant can eliminate potential initiators of oxidation and thus prevent reaction (1). It can also stop the process by donating an electron and reducing one of the radicals in reaction (2) or (3), thus halting the propagation steps. A primary antioxidant can be effective if it is able to donate an electron (or hydrogen atom) rapidly to a lipid radical and itself become more stable then the original radical. The ease of electron donation depends on the molecular structure of the antioxidant, which dictates the stability of the new radical. Many naturally occurring polyphenols, such as flavonoids, anthocyanins, and saponins, which can be found in wine, fruit, grain, vegetables, and almost all herbs and spices, are effective antioxidants that operate by this mechanism.

A secondary antioxidant can prevent reaction (1) from taking place by absorbing ultraviolet light, scavenging oxygen, chelating transition metals, or inhibiting enzymes involved in the formation of reactive oxygen species, for example, NADPH oxidase and xanthine oxidase (reducing molecular oxygen to superoxide and hydrogen peroxide), dopamine-β-hydroxylase, and lipoxygenases. The common principle of action in the above examples is the removal of the component acting as the catalyst that initiates and stimulates the free-radical chain reaction. See Enzyme

Among antioxidants, the synthetic compounds butylated hydroxyanisole (BHA), propyl gallate, ethoxyquin, and diphenylamine are commonly used as food additives. Quercetin belongs to a large natural group of antioxidants, the flavonoid family, with more than 6000 known members, many acting through both mechanisms described above. Ascorbic acid is an important water-soluble plasma antioxidant; it and the tocopherols, the main lipid soluble antioxidants, represent the antioxidants in biological systems. β-Carotene belongs to the carotenoid family, which includes lycopene, the red pigment in tomatoes; the family is known to be very effective in reacting with singlet oxygen (1O2), a highly energetic species of molecular oxygen. See Ascorbic acid, Carotenoid, Flavonoid

antioxidant

[‚an·tē′äk·sə·dənt]
(physical chemistry)
A substance that, when present at a lower concentration than that of the oxidizable substrate, significantly inhibits or delays oxidative processes, while being itself oxidized. In primary antioxidants, antioxidative activity is implemented by the donation of an electron or hydrogen atom to a radical derivative, and in secondary antioxidants by the removal of an oxidative catalyst and the consequent prevention of the initiation of oxidation. Antioxidants are used in polymers to prevent degradation, and in foods, beverages, and cosmetic products to inhibit deterioration and spoilage.

antioxidant

1. any substance that retards deterioration by oxidation, esp of fats, oils, foods, petroleum products, or rubber
2. Biology a substance, such as vitamin C, vitamin E, or beta carotene, that counteracts the damaging effects of oxidation in a living organism
References in periodicals archive ?
Simply getting older also adds to oxidative stress in the body, which is why the growing aging population is turning to antioxidant foods and supplements for support.
ORAC: TOP-RANKED ANTIOXIDANT FOODS Acai berries 18,400 Pomegranates 10,500 Blackberries 5,100 Bilberry 4,200 Blueberries 3,200 Plums 2,800 Raspberries 2,700 Strawberries 2,600 Oranges 2,400 Elderberry 2,200 Cherries 2,100 Black Currant 1,160 Red grapes 1,100 Broccoli flowers 900 Kiwi fruit 900 Beets 840 Red bell pepper 710 Grapefruit, pink 483 Onion 450 Corn 400 Eggplant 390 The numerical values above indicate ORAC units per 100 grams (about 3.
Three easy-to-grow antioxidant foods, plus black pepper, also high in antioxidants: a lot of benefits in one tasty dish.
Broccoli is also an excellent source of fibre, carotenoid-rich and hailed as one of the top 10 antioxidant foods.
Dubbed "the smarter grape" because it has two more chromosomes than other grapes, the muscadine grape (particularly its seeds) contains up to 10 times the antioxidant value of such other high antioxidant foods as blueberries and cranberries.
Emerging product categories included probiotics, antioxidant foods and beverages, organic fiber, fair trade, and organic products targeted at infant and child demographics.
The antioxidant properties of raspberries and strawberries are so good at protecting cells in the body from damaging free radicals, that a report from the United States Department of Agriculture ranked them 10th and 11th in the list of the top antioxidant foods.
Olive oil appears not to have any intrinsic protective properties and its oxidative stress needs to be buffered by antioxidant foods, which are sufficient in a vegetable and fruit-rich diet.
Raisins rank among the top antioxidant foods, according to USDA The antioxidant contribution of raisins was recently noted in released tests conducted by USDA at Tufts University in Boston.