signal transduction

(redirected from Biochemical signaling)
Also found in: Dictionary, Medical, Wikipedia.

Signal transduction

The transmission of molecular signals from a cell's exterior to its interior. Molecular signals are transmitted between cells by the secretion of hormones and other chemical factors, which are then picked up by different cells. Sensory signals are also received from the environment, in the form of light, taste, sound, smell, and touch. The ability of an organism to function normally is dependent on all the cells of its different organs communicating effectively with their surroundings. Once a cell picks up a hormonal or sensory signal, it must transmit this information from the surface to the interior parts of the cell—for example, to the nucleus. This occurs via signal transduction pathways that are very specific, both in their activation and in their downstream actions. Thus, the various organs in the body respond in an appropriate manner and only to relevant signals. See Cell (biology)

All signals received by cells first interact with specialized proteins in the cells called receptors, which are very specific to the signals they receive. These signals can be in various forms. The most common are chemical signals, which include all the hormones and neurotransmitters secreted within the body as well as the sensory (external) signals of taste and smell. The internal hormonal signals include steroid and peptide hormones, neurotransmitters, and biogenic amines, all of which are released from specialized cells within the various organs. The external signals of smell, which enter the nasal compartment as gaseous chemicals, are dissolved in liquid and then picked up by specialized receptors. Other external stimuli are first received by specialized receptors (for example, light receptors in the eye and touch receptors in the skin), which then convert the environmental signals into chemical ones, which are then passed on to the brain in the form of electrical impulses.

Once a receptor has received a signal, it must transmit this information effectively into the cell. This is accomplished either by a series of biochemical changes within the cell or by modifying the membrane potential by the movement of ions into or out of the cell. Receptors that initiate biochemical changes can do so either directly via intrinsic enzymatic activities within the receptor or by activating intracellular messenger molecules. Receptors may be broadly classified in four groups that differ in their mode of action and in the molecules that activate them.

The largest family of receptors are the G-protein-coupled receptors (GPCRs), which depend on guanosine triphosphate (GTP) for their function. Many neurotransmitters, hormones, and small molecules bind to and activate specific G-protein-coupled receptors.

A second family of membrane-bound receptors are the receptor tyrosine kinases (RTKs). They function by phosphorylating themselves and recruiting downstream signaling components.

Ion channels are proteins open upon activation, thereby allowing the passage of ions across the membrane. Ion channels are responsive to either ligands or to voltage changes across the membrane, depending on the type of channel. The movement of ions changes the membrane potential, which in turn changes cellular function. See Biopotentials and ionic currents

Steroid receptors are located within the cell. They bind cell-permeable molecules such as steroids, thyroid hormone, and vitamin D. Once these receptors are activated by ligand, they translocate to the nucleus, where they bind specific DNA sequences to modulate gene expression. See Steroid

The intracellular component of signal propagation, also known as signal transduction, is receptor-specific. A given receptor will activate only very specific sets of downstream signaling components, thereby maintaining the specificity of the incoming signal inside the cell. In addition, signal transduction pathways amplify the incoming signal by a signaling cascade (molecule A activates several molecule B's, which in turn activate several molecule C's) resulting in an appropriate physiological response by the cell.

Several small molecules within the cell act as intracellular messengers. These include cAMP, cyclic guanosine monophosphate (cGMP), nitric oxide (NO), and Ca2+ ions. Increased levels of Ca2+ in the cell can trigger several changes, including activation of signaling pathways, changes in cell contraction and motility, or secretion of hormones or other factors, depending on the cell type. Increased levels of nitric oxide cause relaxation of smooth muscle cells and vasodilation by increasing cGMP levels within the cell. Increasing cAMP levels can modulate signaling pathways by activating the enzyme protein kinase A (PKA).

One of the most important functions of cell signaling is to control and maintain normal physiological balance within the body. Activation of different signaling pathways leads to diverse physiological responses, such as cell proliferation, death, differentiation, and metabolism. Signaling pathways in cells may also interact with each other and serve as signal integrators. For example, negative and positive feedback loops in pathways can modulate signals within a pathway; positive interactions between two signaling pathways can increase duration of signals; and negative interactions between pathways can block signals. See Cell nucleus, Cell organization, Endocrine system (vertebrate), Noradrenergic system

signal transduction

[′sig·nəl tranz‚dək·shən]
(cell and molecular biology)
The relaying of molecular signals (for example, as contained in a hormone) or physical signals (for example, sensory stimuli) from a cell's exterior to its intracellular response mechanisms.
References in periodicals archive ?
As opposed to passive materials, living cells actively respond to the mechanical stimuli of their environment through the transduction of mechanical information into biochemical signaling events.
The answer, it turns out, involves delicate interactions between biomechanical stress, or force, which living cells exert on one another, and biochemical signaling.
The talks at this year's meeting were of exceptionally high quality with new exciting insights on the role of gut fauna in healthy aging, protein biology, and why our daily rhythms get disrupted during aging and the widespread ramifications thereof in inflammation and biochemical signaling," said Rochelle Buffenstein, Ph.
By controlling information flow through biochemical signaling and the flow of chemical energy through metabolism, biochemical processes give rise to the complexity of life.
If it is a dangerous intruder, the TLR can also trigger the release of inflammatory substances via biochemical signaling pathways.
of Graz, Austria) summarize the early work in biochemical signaling by Otto Loewi (1873-1961), Henry Hallet Dale (1875-1968), and Wilhelm Feldberg (d.
Blood vessels maintain a balanced vasomotor tone mediated through biochemical signaling between endothelial cells and smooth muscle cells (Moncada et al.
In order for a new blood vessel to be formed, endothelial cells must respond to biochemical signaling and begin to migrate toward one another to form microtubules that eventually become new blood vessels.
MannKind's IRE-1 inhibitor MKC-3946 is part of a drug discovery program (MKC204) targeting the key biochemical signaling pathway of unfolded protein response that may play a role in a number of diseases.
can help trigger an overabundance of biochemical signaling.
Tipgunlakant's active expertise includes biochemical signaling in disease, particularly in cancer processes.