bounded set

(redirected from Bounded subset)

bounded set

[¦bau̇n·dəd ′set]
(mathematics)
A collection of numbers whose absolute values are all smaller than some constant.
A set of points, the distance between any two of which is smaller than some constant.
References in periodicals archive ?
This is a closed and bounded subset of the space of d x (d + 1) matrices, hence it is compact with respect to the standard topology.
Let Conv be the map from A(M, c) to the space of bounded subsets of [R.
It is easy to check that T is continuous and compact on each bounded subset of X.
On the other hand, T is continuous and compact on each bounded subset of X.
If [OMEGA] is an open bounded subset of X, the mapping N will be called L-compact on [bar.
Now, we shall search an appropriate open bounded subset [OMEGA] for the application of the continuation theorem, Lemma 2.
n]) is called a Mackey-Cauchy sequence in A if there exist a balanced and bounded subset B of A and for every [epsilon] > 0 a number [n.
Then S(a) is an idempotent and bounded subset of A.
p] is a uniformly bounded subset of the Banach Space.
Schaefer [5]) Let (B, | x |) be a normed linear space, H a continuous mapping of B into B which is compact on each bounded subset of B.
which is a closed convex and bounded subset of the Banach space [P.
Liu) Let X be a Banach space, and let K be a nonempty closed convex and bounded subset of X.