# Brownian movement

(redirected from Brownian motion)
Also found in: Dictionary, Thesaurus, Medical, Wikipedia.

## Brownian movement or motion,

zigzag, irregular motion exhibited by minute particles of matter when suspended in a fluid. The effect has been observed in all types of colloidal suspensions (see colloidcolloid
[Gr.,=gluelike], a mixture in which one substance is divided into minute particles (called colloidal particles) and dispersed throughout a second substance. The mixture is also called a colloidal system, colloidal solution, or colloidal dispersion.
)—solid-in-liquid, liquid-in-liquid, gas-in-liquid, solid-in-gas, and liquid-in-gas. It is named for the botanist Robert Brown who observed (1827) the movement of plant spores floating in water. The effect, being independent of all external factors, is ascribed to the thermal motion of the molecules of the fluid. These molecules are in constant irregular motion with a velocity proportional to the square root of the temperature. Small particles of matter suspended in the fluid are buffeted about by the molecules of the fluid. Brownian motion is observed for particles about 0.001 mm in diameter; these are small enough to share in the thermal motion, yet large enough to be seen with a microscope or ultramicroscope. The first satisfactory theoretical treatment of Brownian motion was made by Albert Einstein in 1905. Jean Perrin made a quantitative experimental study of the dependence of Brownian motion on temperature and particle size that provided verification for Einstein's mathematical formulation. Perrin's work is regarded as one of the most direct verifications of the kinetic-molecular theory of gaseskinetic-molecular theory of gases,
physical theory that explains the behavior of gases on the basis of the following assumptions: (1) Any gas is composed of a very large number of very tiny particles called molecules; (2) The molecules are very far apart compared to their sizes,
.

## Brownian movement

The irregular motion of a body arising from the thermal motion of the molecules of the material in which the body is immersed. Such a body will of course suffer many collisions with the molecules, which will impart energy and momentum to it. Because, however, there will be fluctuations in the magnitude and direction of the average momentum transferred, the motion of the body will appear irregular and erratic.

In principle, this motion exists for any foreign body suspended in gases, liquids, or solids. To observe it, one needs first of all a macroscopically visible body; however, the mass of the body cannot be too large. For a large mass, the velocity becomes small. See Kinetic theory of matter

## Brownian Movement

the disorderly motion of small particles (dimensions of several microns or less) suspended in a liquid or gas; takes place under the influence of collisions of molecules of the surrounding medium. It was discovered by R. Brown in 1827. The suspended particles, visible only under a microscope, move independently of each other and describe complex zigzag trajectories. Brownian movement does not diminish with time and does not depend on the chemical properties of the medium. The intensity of Brownian movement increases with the temperature of the medium and with the reduction of its viscosity and the particle size.

A systematic explanation of Brownian movement was given by A. Einstein and M. Smoluchowski in 1905-06 on the basis of kinetic molecular theory. According to this theory, the molecules of a liquid or gas exist in constant thermal movement, and the momenta of various molecules do not have the same magnitude and direction. If the surface of a particle placed in such a medium is small, as is the case for a Brownian particle, then the impacts experienced by the particles—caused by the surrounding molecules—will not be exactly compensated. Consequently, as a result of this “bombardment” by molecules, the Brownian particle falls into disorderly motion, changing the magnitude and direction of its velocity approximately 1014 times per second.

In observation of Brownian movement (see Figure 1), the position of a particle is recorded after equal time intervals. Of course, between observations the particle moves non-rectilinearly, but the connection of the successive positions by straight lines yields an arbitrary picture of the motion.

The principles of Brownian movement serve as graphic confirmation of the fundamental hypotheses of kinetic molecular theory. The general picture of Brownian movement is described by Einstein’s law for the mean square displacement of the particle Δx2 in any direction x. If within the time between two measurements a sufficiently large

Figure 1. Brownian movement of a particle of gamboge in water. The points indicate the successive positions of the particle over 30-second intervals. The observations were performed by J. Perrin under a microscope at a magnification of approximately 3,000.

number of collisions of the particle with molecules takes place, then Δx2 is proportional to this time τ:

(1) Δx2 = 2Dτ

Here D is the diffusion coefficient, which is determined by the resistance exerted by any medium in which the particle moves. For a specific particle of radius a, it is equal to

(2) D = kT/6πηa

where k is the Boltzmann constant, T is the absolute temperature, and η is the dynamic viscosity of the medium.

The theory of Brownian movement explains the random motion of a particle under the influence of random forces caused by molecules and frictional forces. The random character of the force implies that its action during the time interval τ1 is completely independent of the action during the time interval τ2, unless these intervals overlap. The average force, after a sufficiently large period of time, is equal to zero, and the average displacement Δx of a Brownian particle is also found to be zero.

The conclusions of the theory of Brownian movement agree brilliantly with experiments. Formulas (1) and (2) were corroborated by the measurements of J. Perrin and T. Svedberg (1906). On the basis of these relations, the Boltzmann constant and Avogadro’s number were experimentally determined to be in accordance with their values obtained by other methods.

The theory of Brownian movement has played an important role in the justification of statistical mechanics; it is of practical significance as well. Above all, Brownian movement limits the accuracy of measuring instruments—for example, the limit of accuracy of the readings of a mirror galvanometer is determined by the chatter of the mirror, which is similar to that of a Brownian particle being bombarded by air molecules; the laws of Brownian movement determine the random movement of electrons, which causes the noise in electric circuits; the dielectric losses in dielectrics are explained by the random motions of the molecule-dipoles that make up the dielectric; and the random motion of ions in solutions of electrolytes increases their electrical resistance.

### REFERENCES

Einstein, A., and M. Smoluchowski. Braunovskoe dvizhenie. Moscow-Leningrad, 1936. (Translated from German; with supplementary articles by Iu. A. Krutkov and B. I. Davydov.)
Feynman, R., R. Leighton, and M. Sands. Feinmanovskie lektsii po fizike, vol. 4. Moscow, 1965. (Translated from English.)

## Brownian movement

[′brau̇n·ē·ən ‚müv·mənt]
(statistical mechanics)
Random movements of small particles suspended in a fluid, caused by the statistical pressure fluctuations over the particle.
References in periodicals archive ?
Equation (16) suggests that the risk-neutralized distributions are equivalent to changing measure on the Brownian motions and jump sizes.
Dai in Wuhan City detected anisotropic Brownian motion by loading a small drop of toluidine blue solution into a container of water.
If a geometric Brownian motion assumption is employed to describe the stochastic nature of jet fuel prices, parameter estimates are required to produce forecasts: a drift term p which describes the constant, instantaneous rate of change of jet fuel prices, absent any random shocks; and a volatility term o which describes the sensitivity of jet fuel prices to these random economic shocks.
t] is a Brownian motion and a is the constant annual volatility of the stock.
Second, it is well known that the geometric Brownian motion model underestimates the probability of extreme negative stock price movements.
A Fractional Brownian Motion (FBM) (Vasconcelos 2004), is a Gaussian process s{[W.
Gas particle interchange as a result of Brownian motion contributes to the diffusion of gases in the respiratory tract.
The cytoplasmic granules exhibit constant, Brownian motion, due to swelling of the neutrophil--a result of hypotonicity.
But beginning in the early 1990s, scientists began to suspect that certain protein motors can perform their tasks not despite Brownian motion, but thanks to it.
Their random orientation is due to Brownian motion, while a field effect is used to align the particles so they let light through the film.
Perhaps the most important example of this universality property is Brownian motion, which is well known to be the scaling limit of many different classes of random paths.
Physics teachers introduced such scientific principles as Liquid Dynamics, Heisenberg's Uncertainty Principle, Brownian Motion, atomic Fission and Fusion, and Newton's Laws of Motion.

Site: Follow: Share:
Open / Close