Carbon Fiber

(redirected from Carbon fibre)
Also found in: Dictionary, Medical.

carbon fiber

[′kär·bən ‚fī·bər]
(materials)
Commercial material made by pyrolyzing any spun, felted, or woven raw material to a char at temperatures from 700 to 1800°C.
A filamentary form of carbon, usually with a diameter in the 6-10-micrometer range.

Carbon Fiber

 

a fiber consisting mainly of carbon. Carbon fibers are usually obtained by heat-treating synthetic chemical fibers or natural organic fibers in such a way that mainly carbon atoms remain in the fibrous material. If the treatment temperature is less than 900°C, the carbon fibers will contain 85–90 percent carbon; at 900°-1500°C the content will be 95–99 percent, and at 1500°-3000°C it will exceed 99 percent. In addition to ordinary organic fibers, which are most often viscose and polyacrylonitrile fibers, special fibers of phenolic resins, lignin, and coal-tar and petroleum pitches are used in producing carbon fibers.

Depending on the form of the starting material, carbon fibers can take the form of continuous or staple yarns, filaments, ribbons, felts, and fabrics. In addition, ordinary textile machinery can be used to make woven and unwoven materials from carbon fibers.

Carbon fibers have extremely high thermal stability. Upon heating to 1600°-2000°C in the absence of oxygen, the mechanical indexes of the fiber remain unchanged. This stability recommends carbon fibers for use in heat shields and as insulating material in high-temperature technology. The reinforced plastics made from carbon fibers are distinguished by their good ablation characteristics.

Carbon fibers, although resistant to corrosive chemical media, undergo oxidation upon heating in the presence of oxygen. The temperature ceiling for fibers used in an air medium is 300°-350°C. The application of a thin layer of carbides, especially SiC, or boron of nitride to the carbon fibers does much to correct this drawback. Owing to their high chemical stability, carbon fibers are used in the filtration of corrosive media, the purification of gases, and the manufacture of protective suits.

A change in the conditions of heat treatment can alter the electrophysical properties of the fibers; the volume electrical resistivity can range from 2 × 10–3 to 106 ohm-cm. Certain fibers can be used as electrical heating elements and in the production of thermocouples.

By the activation of carbon fibers, materials are obtained having larger active surfaces (300–1,000 m2/g). These materials are excellent sorbents. The application of catalysts to the fibers makes possible the creation of catalytic systems with highly developed surfaces.

Carbon fibers usually have strengths of the order of 0.5–1 giga-newton per sq m (GN/m2), equivalent to 50–100 kilograms-force per sq mm (kgf/mm2), and elastic moduli of 20–70 GN/m2(2,000–7,000 kgf/mm2). Fibers subjected to orientational elongation have strengths of 2.5–3.5 GN/m2 (250–350 kgf/mm2) and elastic moduli of 200–450 GN/m2 (20 × 103 –45 × 103 kgf/mm2). Owing to the low density (1.7–1.9 g/cm3), low, that is, in relation to the fibers’ strength and elastic modulus, the mechanical properties of carbon fibers are superior to all known heat-resistant fibrous materials. Structural carbon-fiber reinforced composites having polymeric binders are obtained from carbon fibers possessing high strength and high elastic moduli. Composite materials based on carbon fibers and ceramic binders, carbon fibers and a carbon matrix, and carbon fibers and metals have been developed that are capable of withstanding more rigorous temperature conditions than ordinary plastics.

REFERENCE

Konkin, A. A. Uglerodnye i drugie zharostoikie voloknistye materialy. Moscow, 1974.

A. A. KONKIN

References in periodicals archive ?
The carbon fibre significantly boosts strength and stiffness while the glass fibre allows the toughness that many choose LFT materials for to be retained.
Sabic and Montefibre also signed a memorandum of understanding for the companies to study the feasibility of a new carbon fibre production plant in Spain to be integrated into Montefibre's existing acrylic fibre production site -- and thus allowing Sabic to accelerate product development and material qualification activities with customers and end-users.
Furthermore, carbon fibre can be used to make so-called carbon fibre reinforced plastic (CFRP)-which forms the basis of carbon fibre parts currently used in aircraft, sports equipment and racing cars.
A year later, three American cloth manufacturers -- Dimension Polyant of Putnam, Connecticut; Bainbridge International of Canton, Massachusetts; and North Cloth of Milford, Connecticut -- have improved the flexibility of the carbon fibre in the cloth.
GOCarbonFibre 2012 continues the tradition of the Global Outlook for Carbon Fibre conference, through delivering a speaking programme comprised of the most prominent industry experts.
Carbon fibre is certainly a material of the future, with its high strength to weight ratio making it increasingly popular for use in the automotive and aerospace manufacturing sectors as an alternative to steel and aluminium.
The plant is to produce ultra light-weight carbon fibre reinforced plastics for use in new BMW i vehicles.
To ensure large-scale uptake in more industries, manufacturers must design an eco-friendly and economical recycling method to prevent accumulation of carbon fibre waste.
Toray said, "With the newly developed TORAYCA T1100G, Toray succeeded in enabling both high strength and high modulus, which was thought to be technically difficult, by employing carbonization technology to precisely control fibre structure at the nano-level, and significantly improved the performance of the carbon fibre in comparison with Toray s existing products such as TORAYCA T1000G and T800S, which are widely used in high-end applications led by the aerospace field.
The facility is part of the company's strategy to produce lightweight carbon fibre reinforced plastics for use in BMW's electric Megacity Vehicle, scheduled to go on sale in 2013.
Visiongain believes this trend will increase the size of the carbon fibre and also the overall composites market in the next decade.
Furthermore, carbon fibre can be used to make so-called carbon fibre reinforced plastic (CFRP)which forms the basis of carbon fibre parts currently used in aircraft, sports equipment and racing cars.