Chlorosulfonated Polyethylene

Also found in: Acronyms.

Chlorosulfonated Polyethylene


a synthetic rubber:

A product of the chemical modification of polyethylene by chlorine and sulfur dioxide, chlorosulfonated polyethylene has a density of 1.11–1.26 g/cm3, a chlorine content of 27–45 percent, and a sulfur content of 0.8–2.2 percent. Owing to the presence of chlorine, it is resistant to fire, oil, and the action of microorganisms and exhibits good adhesion to various surfaces. It is insoluble in aliphatic hydrocarbons and alcohols, slightly soluble in ketones and esters, and readily soluble in aromatic hydrocarbons, such as toluene and xylene, and in chlorinated hydrocarbons.

Chlorosulfonated polyethylene is superior to other rubbers in its resistance to the effects of ozone and inorganic acids, such as chromic, nitric, sulfuric, and phosphoric acids, as well as to the effects of concentrated alkalies, chlorine dioxide, and hydrogen peroxide. It is resistant to light, is impermeable to gas, and has good dielectric properties. The —SO2Cl groups and labile chlorine atoms participate in the vulcanization of chlorosulfonated polyethylene; a typical vulcanizing system consists of MgO, 2-mercaptobenzothiazole, diphenylguanidine, and rosin. The tensile strength of pure rubbers made of chlorosulfonated polyethylene may reach 32 meganewtons/m2 (320 kilograms-force/cm2), with a relative elongation of 350–600 percent. Such rubbers have high resistance to wear and repeated deformation. The temperature range for their most efficient use is –60° to 180°C. Chlorosulfonated polyethylene made from high-density polyethylene may also be used in unvulcanized form.

Chlorosulfonated polyethylene is used in the production of industrial and household goods and of anticorrosion coatings to be applied by the rubberizing method. It is used for insulating various cables, including ship cables. It is also used as a film-forming agent in varnishes and paints for the preservation of wood, metal, and reinforced concrete and as a base for adhesives and hermetic sealants.

The trade names of chlorosulfonated polyethylene are KhSPE in the USSR and Hypalon in the USA. In 1976, world production amounted to about 30,000 tons.


Entsiklopediia polimerov, vol. 3. Moscow, 1977.


References in periodicals archive ?
Ltd, Thailand and chlorosulfonated polyethylene rubber (Hypalon 40) was supplied from Jiangxi Hongrun Chemical Co.
Chlorosulfonated polyethylene rubber (CSM) is a special purposed elastomer and it also exhibits for resistance to alcohol which contains in gasohol.
A strong relaxation appears at roughly -20[degrees]C, corresponding to the soft chlorosulfonated polyethylene segments.
CSPE], which can be considered an elastomer, a strong relaxation related to the chlorosulfonated polyethylene appears at roughly -20[degrees]C.
The dielectric response of chlorosulfonated polyethylene (CSPE), made by randomly chlorinating and chlorosulfonating polyethylene (PE), was determined using single-surface laboratory dielectric sensors.
The curvature in the data regressions, though, is similar to the trends reported earlier in this paper for Nafion (R) and for chlorosulfonated polyethylene.
Chlorinated polyethylene and chlorosulfonated polyethylene Compounds were mixed in a BR style internal mixer using an upside-down mixing procedure and 0.
Vara, "A comparison of chlorinated and chlorosulfonated polyethylene elastomers with other materials for automotive fuel hose covers," ACS Rubber Division, October 17-20, 2000, Cincinnati, OH.
Four chemically different polymers were investigated for suitability as fuel hose covers: Chlorosulfonated polyethylene, chlorinated polyethylene, acrylonitrile-butadiene rubber/polyvinyl chloride blend and epichlorohydrin terpolymer.
Processing and compounding will be discussed, including EPDM, polychloroprene, SBR/BR, nitrile rubber, chlorosulfonated polyethylene, silicone rubber, fluoroelastomers and thermoplastic elastomers.
Rubbers studied include natural rubber, styrene butadiene rubber, butyl rubber, polychloroprene, nitrile rubber, acrylate rubber, chlorosulfonated polyethylene, polysulfide rubber and silicone rubber.
This article will discuss cure systems and antidegradant packages for belt polymers: polychloroprene (CR), alkylated chlorosulfonated polyethylene (ACSM), hydrogenated nitrile-butadiene copolymer (HNBR) and ethylene-alkylene(diene) polymers (EPDM, EOM).