Climatic Maps

Climatic Maps

 

maps that reflect the territorial distribution of climatic conditions based on the results of long-term observations. Climatic maps can be compiled both for individual climatic features (temperature, precipitation, humidity) and for combinations of them at the earth’s surface and in the upper layers of the atmosphere. Climatic maps afford a very convenient overview of the climatic features in a large region and permit values of climatic features to be compared in different parts of the region. Through interpolation the maps can be used to determine the values of climatic features in any particular spot.

Climatic maps generally apply to individual months and to the year as a whole, sometimes to the four seasons, to the growing period, and so forth. On maps compiled from the observations of ground meteorological stations, atmospheric pressure is converted to sea level. Air temperature maps are compiled both from the actual values observed on the surface of the earth and from values converted to sea level. The pressure field in free atmosphere is represented either by maps of the distribution of pressure at different standard altitudes—for example, at every kilometer above sea level—or by maps of baric topography on which altitudes (more precisely geopotentials) of the main isobaric surfaces (for example, 900, 800, and 700 millibars) counted off from sea level are plotted. The temperature, humidity, and wind on aeroclimatic maps may apply either to standard altitudes or to the main isobaric surfaces.

Isolines are drawn on maps of such climatic features as the long-term mean values (of atmospheric pressure, temperature, humidity, total precipitation, and so forth) to connect points with equal values of the feature in question—for example, isobars for pressure, isotherms for temperature, and isohyets for precipitation. Isoamplitudes are drawn on maps of amplitudes (for example, annual amplitudes of air temperature—that is, the differences between the mean temperatures of the warmest and coldest month). Isanomals are drawn on maps of anomalies (for example, deviations of the mean temperature of each place from the mean temperature of the entire latitudinal zone). Isolines of frequency are drawn on maps showing the frequency of a particular phenomenon (for example, annual number of days with a thunderstorm or snow cover). Isochrones are drawn on maps showing the dates of onset of a given phenomenon (for example, the first frost and appearance or disappearance of the snow cover) or the date of a particular value of a meteorological element in the course of a year (for example, passing of the mean daily air temperature through zero). Isolines of the mean numerical value of wind velocity or isotachs are drawn on wind maps (charts); the wind resultants and directions of prevailing winds are indicated by arrows of different length or arrows with different plumes; lines of flow are often drawn. Maps of the zonal and meridional components of wind are frequently compiled for the free atmosphere. Atmospheric pressure and wind are usually combined on climatic maps. Wind roses, curves showing the distribution of other meteorological elements, diagrams of the annual course of elements at individual stations, and the like are also plotted on climatic maps.

Maps of climatic regionalization, that is, division of the earth’s surface into climatic zones and regions according to some classification of climates, are a special kind of climatic map.

Climatic maps are often incorporated into climatic atlases of varying geographic range (globe, hemispheres, continents, countries, oceans) or included in comprehensive atlases. Besides general climatic maps, applied climatic maps and atlases have great practical value. Aeroclimatic maps, aeroclimatic atlases, and agroclimatic maps are the most numerous.

S. P. KHROMOV

References in periodicals archive ?
Finally, the generalised tracks and nodes were superimposed on topographical and climatic maps of tropical America.