Dedekind


Also found in: Dictionary, Wikipedia.

Dedekind

(Julius Wilhelm) Richard . 1831--1916, German mathematician, who devised a way (the Dedekind cut) of according irrational and rational numbers the same status
References in periodicals archive ?
Maraldo, "Self-Mirroring and Self-Awareness: Dedekind, Royce, and Nishida," in Frontiers of Japanese Philosophy: 1, ed.
59) Cassirer, in this respect, turns his gaze to Dedekind just because according to him the specific determinations of numbers cannot be abstracted from sensible objects, rather they are terms of relation (Relationsterme) and not independent existences.
Keywords: disimplicial arcs, bisimplicial edges of bipartite graphs, disimplicial elimination schemes, bisimplicial elimination schemes, diclique irreducible digraphs, transitive digraphs, dedekind digraphs
Lemma 20 An order graph D is dedekind if and only if for every v, w [member of] V(G) with [mu]({v, w}) [not equal to] 0 there exists u [member of] V(G) such that [absolute value of [mu]({v, w})] = [d.
Este es el sentido en el que Dedekind y Peano usaron dicho concepto y que constituye su significado original (Soare, 1996, pp.
a) Dedekind cuts whose purpose is to provide a sound logical foundation for the real number system.
Aqui entendere por numero N al entero que en la aritmetica de Dedekind y Peano es el sucesor del sucesor del sucesor (n veces) de 0, es decir s(s(s .
The following Proposition gives some properties whenever each lcc operator from a Dedekind [sigma]-complete Banach lattice E into F is AM-compact,
Durante el siglo xix se desarrollaron entre otras teorias para la formalizacion del numero irracional la llamada cortadura de Richaard Dedekind.
Con Cantor y Dedekind se establecio la fundamentacion de los numeros reales, ambos formalizaron y generalizaron el proceso de aproximacion de algunos irracionales.
The destination managers are investing considerable efforts (time and money) in order to market their destination online without considering that unofficial information competitors are gaining more and more popularity among internet users (Inversini, Marchiori, Dedekind & Cantoni, 2010).
Dedekind articulates the infinity of a set as its being in one-one correspondence with one of its proper subsets.