(redirected from Fullerenes)
Also found in: Dictionary, Thesaurus.


any of a class of carboncarbon
[Lat.,=charcoal], nonmetallic chemical element; symbol C; at. no. 6; interval in which at. wt. ranges 12.0096–12.0116; m.p. about 3,550°C;; graphite sublimes about 3,375°C;; b.p. 4,827°C;; sp. gr. 1.8–2.1 (amorphous), 1.9–2.3 (graphite), 3.
..... Click the link for more information.
 molecules in which the carbon atoms are arranged into 12 pentagonal faces and 2 or more hexagonal faces to form a hollow sphere, cylinder, or similar figure. The smallest possible fullerene molecule may have as few as 32 atoms of carbon, although fullerenelike molecules (lacking a hexagonal face) with as few as 20 carbon atoms have been found.

The most common and most stable fullerene is buckminsterfullerenebuckminsterfullerene
or buckyball,
C60, hollow cage carbon molecule named for R. Buckminster Fuller because of the resemblance of its molecular structure to his geodesic domes.
..... Click the link for more information.
, a spheroidal molecule, resembling a soccer ball, consisting of 60 carbon atoms. Buckminsterfullerene is the most abundant cluster of carbon atoms found in carbon soot. It is also the smallest carbon molecule whose pentagonal faces are isolated from each other. Other fullerenes that have been produced in macroscopic amounts have 70, 76, 84, 90, and 96 carbon atoms, and much larger fullerenes have been found, such as those that contain 180, 190, 240, and 540 carbon atoms.

Fullerenes were first identified in 1985 as products of experiments in which graphite was vaporized using a laser, work for which R. F. Curl, Jr., R. E. Smally, and H. W. Kroto shared the 1996 Nobel Prize in Chemistry. Fullerenes have since been discovered in nature as a result of lightning strikes, in the residue produced by carbon arc lamps, in interstellar dust, and in meteorites.

Fullerene chemistry involves substituting metal atoms for one or more carbon atoms in the molecule to produce compounds called fullerides. Among these are conducting films of alkali metal-doped fullerenes and superconductors (potassium-doped Tc 18°K;, rubidium-doped Tc 30°K;). Fullerenes also have been used to produce tiny diamonds and thin diamond films. Fullerene research is expected to lead to new materials, lubricants, coatings, catalysts, electro-optical devices, and medical applications.


See M. S. Dresselhaus et al., Science of Fullerenes and Carbon Nanotubes (1996); H. W. Kroto, The Fullerenes: New Horizons for the Chemistry, Physics, and Astrophysics of Carbon (1997); R. Taylor, ed., Lecture Notes on Fullerene Chemistry (1999).


A large molecule composed entirely of carbon, with the chemical formula Cn , where n is any even number from 32 to over 100; believed to have the structure of a hollow spheroidal cage with a surface network of carbon atoms connected in hexagonal and pentagonal rings.
References in periodicals archive ?
The NREL researchers strategically partnered with colleagues at Colorado State University to take advantage of expertise at each institution in producing donors and acceptors with well-defined and highly tunable energy levels: semiconducting SWCNT donors at NREL and fullerene acceptors at CSU.
It suggests that water-soluble fullerenes can act as signaling pathway triggers in the cells, switching on the Nrf2-antioxidant signaling activity and blocking the NF-[kappa]B activity.
The chemistry of fullerene (C60) has opened up an avenue to new research of materials and its applications since the discovery of fullerene in 1985 [1].
2]-centered glycine radicals respectively with fullerenes are shown in Fig.
The increase in absorption was enough so that, when paired with another organic acceptor material called subnaphthalocyanine (SubNC), they achieved enough electron mobility to substitute for fullerenes.
For instance, fullerenes are currently used as electron acceptors in polymer-based solar cells, achieving some of the highest power conversion efficiencies known for these kinds of solar cells.
Schein experimented with various fullerenes to see whether the dihedral angle discrepancy could be set to zero.
Lowest values found for diamond and graphite explains the abundance of these allotropic forms of carbon and the low probability of finding SWCNT and fullerenes in normal terrestrial conditions due to high formation energy needed.
One of the possible roles for fullerenes in medicine is in the light-based treatment called photodynamic therapy, a non-surgical approach used to treat solid tumors and many non-malignant diseases.
As a result, efforts are being made at an accelerated pace to realize mass production of Fullerenes for organic electronics applications.
The aim of the present study is to investigate the toughness of the epoxy polymers modified with fullerene [C.