Gas Storage

gas storage

[¦gas ¦stȯr·ij]
(food engineering)
Storage in a low-oxygen atmosphere to delay ripening.

Gas Storage

 

the storage of gas in natural or artificial reservoirs. Gas storage may be aboveground or underground. Underground gas storage facilities capable of holding hundreds of millions (sometimes billions) of cu m of gas are of fundamental industrial importance. They are less dangerous and many times more economical than aboveground facilities. They require the use of 20-25 times less metal in construction. Unlike gasholders, which are designed to level out the daily irregularities in the use of gas, underground gas storage facilities even out the seasonal irregularities of gas consumption. In the winter of 1968-69 up to 20 million cu m of natural gas were supplied daily to Moscow from underground gas storage facilities, whereas only 1 million cu m of gas was supplied from gasholders. During the summer, when there is a sharp decrease in gas consumption, gas accumulates in the gas storage facilities and, during the winter, when the demand for gas sharply increases, especially because of heating, the gas is taken from the storage facilities (see Figure 1). In addition, underground gas storage facilities also serve as an emergency reserve of fuel and chemical raw materials.

Figure 1. Monthly gas consumption of an industrial city

A gas transport system designed for peak gas demand would supply more gas than necessary for full-year operation, but a system based on minimum supply would not fully provide a city with gas during peak months of the year. Therefore, a gas transport system is designed on the basis of its average capacity, and gas storage facilities are established near large gas consumers. The seasonal variation of gas consumption is partly balanced by the so-called buffer consumers, who use a different type of fuel (usually fuel oil or coal) during the winter and switch over to gas for the summer.

There are two types of underground gas storage facilities: those created in porous rock and those in rock cavities. The first type includes storage reservoirs in depleted oil and gas deposits and those in water-bearing strata. Natural gas is usually stored in these in a gaseous state. The second type includes storage areas created in abandoned mine shafts, old tunnels, caverns, and special underground workings excavated in impervious rock (such as limestones, granites, clays, and halite-bearing rock). In rock cavities gases, usually propane, butane, and their mixtures, are stored especially in a liquefied state at the temperature of the surrounding environment and at pressures ranging up from 0.8-1.0 meganew-tons per sq m (8-10 kilograms-force per sq cm). Underground and aboveground storage of natural gas in a liquid state at atmospheric pressure and low temperature (so-called isothermal storage) has been in use on a commercial scale since the early 1960’s.

The most inexpensive and convenient gas storage facilities are those created in depleted oil and gas beds. These beds are adapted for storage by installing additional equipment, overhauling wells, and laying the necessary communications. In regions where gas reserves are required but depleted oil and gas beds are nonexistent, gas is stored in water-bearing strata. A water-bearing bed used for gas storage is actually an artificially created gas deposit that is exploited cyclically. The creation of such a deposit requires that the water-bearing bed be sufficiently porous and permeable, have a trap for the gas, and be so formed that the water can be forced out of the trap to the periphery of the bed. The trap is generally a domal bed rise covered with impervious rock, especially clays. The gas pumped into the trap expels the water from the trap and remains settled above the water. The dense deposits forming the roof over the collector bed keep the gas from permeating upward. The stratal water prevents the gas from escaping to the sides and down. The main difficulty in creating a gas storage reservoir in a water-bearing stratum is to ascertain whether the prospective part of the stratum can in fact be a trap for the gas. Moreover, when the stratum is inhomogeneous, it is usually necessary to expel the water completely from the stratum without simultaneously permitting the gas to escape beyond the trap. The creation of a gas storage reservoir in a water-bearing stratum requires an average of three to eight years and costs several million rubles. A period of two or three years is required for a return on the capital expenditures. Gas storage reservoirs in water-bearing strata are generally located at depths of from 200-300 to 1,000-1,200 m.

Gas storage in horizontal and gently sloping water-bearing strata was developed in the USSR on the basis of the theoretical work of I. A. Charnyi and was used on a commercial scale for the first time in the world in the creation of the Gatchina Underground Gas Storage Reservoir near Leningrad (1963). This method is based on the fact that a sufficiently large volume of gas in a water-saturated porous environment spreads very slowly and with insignificant leakages in a horizontal bed. Gas storage without traps is of great practical interest, since many gas-consuming regions lack conditions favorable for the creation of conventional water-bearing gas storage facilities.

Reservoirs constructed in halite-rock deposits represent the most important method of storing gas in rock cavities. The creation of this type of reservoir is 10-20 times cheaper than those in other types of rock. A capacity is usually created in the halite-bearing rock by leaching it with water through wells that are later used during the operation of the reservoir. The volume of a single cavern may be as much as 100,000 to 150,000 cu m. The washing of such a cavern lasts for three or four years. A reservoir in salt is created at depths ranging from 80-100 to 1,000 m and more. Deep reservoirs are expedient for the storage of natural gas, since they can sustain higher pressures and consequently contain more gas for a given volume.

Isothermal underground gas storage facilities (for example, for liquefied methane), which are trenches with frozen walls, are also very important. The upper part of the reservoir is reinforced with a concrete collar on which rests a steel roof with heat-insulating material. For the construction of an isothermal storage reservoir, a circular battery of wells is drilled around its perimeter in order to freeze the soil surrounding the future reservoir during the construction period. The freezing wells are no longer needed after the storage space is constructed and filled with liquefied methane. The liquefied methane is stored under atmospheric pressure at temperatures of -161° C to -162° C. The thickness of the frozen soil walls of the storage area slowly increases and reaches 10-15 m. Heat losses decrease in time. Low temperature is maintained in the storage reservoir because of the evaporation of some of the methane (2-4 percent per month). The vapors are collected, liquefied, and returned to the reservoir. The methane bleeding is performed by submersible centrifugal pumps, and subsequent regasification of the liquid is done in special installations. Isothermal gas storage facilities are created in different types of conditions, including weakly stable soils. Their geometric volume may be as much as 80,000 cu m. Isothermal storage of methane is usually considerably more expensive than the storage of methane in a gaseous state in water-bearing strata. Above-ground storage facilities—steel tanks with double walls packed with heat-insulating material—also are used for the storage of liquid hydrocarbons. Aboveground isothermal gas storage facilities are relatively expensive and use a great deal of metal, and therefore they are rarely used.

Historical background. The first underground gas storage facility was built in Canada (1915) in a depleted bed. The greatest developments in underground gas storage have been made in the USA, where there were 330 gas storage facilities in 1968 with a total capacity of 124 billion cu m. East Germany, Poland, Czechoslovakia, West Germany, France, and other countries also have underground gas storage facilities. The first in the USSR was the Bashkatov Gas Storage Reservoir in Kuibyshev Oblast (1958), based on a depleted gas deposit. The Kaluga Water-Bearing Gas Storage Reservoir, which began to be filled with gas in 1959, has been in operation since 1963. Its capacity is 400 million cu m. Later, the Shchelkovo Gas Storage Reservoir, one of the largest in the world, was created in a water-bearing strata; it holds approximately 3.0 billion cu m of gas at a maximum pressure of 11 meganewtons per sq m (110 kilograms-force per cu cm). The operating gas consumption rate at this reservoir is as high as 15 million cu m per day.

In the USSR gas is withdrawn on a commercial scale from five gas storage reservoirs created in depleted beds and from seven reservoirs created in water-bearing strata; two gas storage reservoirs have been constructed in halite-rock deposits (1969). Two large underground gas storage reservoirs were created in depleted gas fields in Saratov Oblast. Gas is pumped into them from the high-capacity Middle Asia-Central Zone gas pipeline system. Work is under way on the construction of very large gas storage reservoirs in depleted deposits in the Western Ukraine, Bashkiria, and Azerbaijan. The Kaluga, Shchelkovo (RSFSR), and Olishevka (Ukrainian SSR) storage reservoirs are being expanded considerably; the Krasnopartizan (Ukrainian SSR) and Incukaln (Latvian SSR) storage reservoirs are being filled with gas. The total capacity of domestic underground gas storage facilities is scheduled to reach 51 billion cu m by 1975.

REFERENCES

Sidorenko, M. V. Podzemnoe khranenie gaza. Moscow, 1965.
Khein, A. L. Gidrodinamicheskii raschet podzemnykh khranilishch gaza. Moscow, 1968.
Khranenie gaza v gorizontal’nykh ipologozalegaiushchikh vodonosnykh plastakh. Moscow, 1968.

E. V. LEVYKIN

References in periodicals archive ?
Decide on market entry strategies in specific markets with the help of an up-to-date review of existing and planned oil and gas storage terminals and other major plant capacities for 2308 active and 46 planned oil storage terminals across 99 countries
Yesterday, the Energy and Utilities Alliance (EUA) announced it has written to newly elected BEIS Select Committee Chair Rachel Reeves MP, calling for clarity regarding the future role of the UKs gas storage.
Underground Gas Storage Industry Outlook in North America to 2020 - Capacity and Capital Expenditure Forecasts with Details of All Operating and Planned Storage Sites" is a comprehensive report on underground gas storage industry in North America.
M2 EQUITYBITES-April 6, 2016-ArcLight Capital Partners Closes Acquisition of Alberta Hub Gas Storage Interests
TEHRAN (FNA)- Iran launched the largest gas storage facility of the Middle East in the Northeastern parts of the country on Sunday.
The energy giant blamed the Government's decision not to subsidise investment in new gas storage and weak economics for axing the projects in East Yorkshire and the North Sea at a cost of PS240m.
com/research/f75slm/underground_gas) has announced the addition of GlobalData's new report "Underground Gas Storage Industry Outlook in Europe, 2013 - Details of All Operating and Planned Gas Storage Sites to 2017" to their offering.
International Resource News-May 2, 2012--Cadeville Gas Storage LLC completes debt financing for building 17 MMDth depleted reservoir natural gas storage facility(C)1994-2012 ENPublishing - http://www.
Cardinal Gas Storage Partners LLC said its wholly owned interstate natural gas storage subsidiary, Cadeville Gas Storage LLC, has executed a ten-year Precedent Agreement with Shell Energy North America, L.
Abu Dhabi Abu Dhabi National Energy Company (Taqa) said yesterday all required statutory approvals and permits to construct and operate the Bergermeer gas storage facility in the Netherlands have been signed by the Minister of Economic Affairs, Agriculture and Innovation, Minister of Infrastructure and Environment and other authorities.
Abu Dhabi National Energy Company PJSC (TAQA) today announced that all required statutory approvals and permits to construct and operate the Bergermeer Gas Storage facility in the Netherlands have been signed by the Minister of Economic Affairs, Agriculture & Innovation, Minister of Infrastructure & Environment and other authorities.
Volumes of dry gas withdrawn from gas storage reservoirs are not considered part of production.