metatheory

(redirected from Meta-theory)
Also found in: Dictionary, Medical.
Related to Meta-theory: Metatheoretical

metatheory

all or any second-order accounts of theories or second-order theories of theories.

Metatheory

 

a theory that analyzes the structure, methods, and properties of some other theory, called the object theory. The term “metatheory” is meaningful only with respect to a given concrete object theory. Thus, the metatheory of logic is called metalogic, and that of mathematics metamathematics. Such terms as “metachemistry” and “metabiology” have a similar meaning (but not “metaphysics”).

In principle, one may speak of the metatheory of any deductive or nondeductive scientific discipline (for example, philosophy in a certain sense plays a metatheoretical role). However, the concept of a metatheory is properly productive only when applied to the deductive sciences, such as mathematics, logic, and the mathematized fragments of the natural and other sciences, for example, linguistics. Furthermore, the actual object of consideration in a metatheory, as a rule, proves not to be some informal scientific theory but its formal analog and explicate— the precise concept of a calculus (formal system). If the theory being investigated in metatheory is informal, it is first subjected to formalization. Thus, the part of metatheory that studies the structure of its own object theory deals with the theory as a formal system; that is, it perceives the elements of that theory as purely formal constructive objects that are devoid of any “content” (meaning), that can be strictly identified with one another (or distinguished from one another), and from which one can construct, using clearly formulated rules of formation, combinations of symbols that are “expressions” (formulas) of the given formal system.

This part of metatheory—known as syntax—also studies the deductive methods of the given object theory. In particular, the concept of a (formal) proof of a given object theory and the more general concept of inference from given premises are defined. Metatheory itself, unlike the object theory, is an informal theory: the nature of the methods of description, inference, and proof used can be stipulated or limited in some special way, and in any case, these methods themselves are intuitively graspable elements of ordinary (natural) language and of the “logic of common sense.” Metatheorems, or “theorems about theorems,” constitute the fundamental content of a metatheory. An example of a syntactic metatheorem is the deduction theorem, which establishes a relation between the concept of deducibility (provability) in a given object theory (for example, in the propositional calculus or the predicate calculus) and the logical operation of implication occurring in the “alphabet” of a given object theory.

Another problem of metatheory is the examination of all possible interpretations of a given formal system. The corresponding part (or aspect) of a metatheory that perceives the object theory as a formalized language is called semantics. An example of a semantic metatheorem is the completeness theorem for the classical propositional calculus, according to which in this calculus the concept of a provable formula (formal theorem) and the concept of a formula that is true under some “natural” interpretation of it coincide.

Many concepts (and the related metatheorems) of metatheory are of “mixed” character: both syntactic and semantic. Such is, for example, the very important concept of consistency, defined both as the nondeducibility in the object theory of a formal contradiction—that is, the conjunction of a given formula and its negation (so-called internal consistency)—and as the “satisfaction” of a given object theory by some natural interpretation (external, or semantic, consistency). That both these concepts coincide in extension is a nontrivial fact of metatheory, a fact that evidently pertains to both the syntax and semantics of a given theory. Gödel’s incompleteness theorem for formal arithmetic (and richer logical-mathematical calculi containing it) and his theorem on the impossibility of proving the consistency of a broad class of calculi using methods formalizable in these calculi are classical examples of metatheorems that relate a number of important syntactic and semantic concepts. The concept of decidability of a formal theory, on the other hand, is purely syntactic, while the concept of completeness is predominantly semantic. Of course, a metatheory itself can be formalized and become the object of study of a given metametatheory.

The concept of “metatheory” was first advanced by D. Hilbert as part of his program of providing foundations of classical mathematics based on methods of proof theory (metamathematics) created by Hilbert’s school. Some very important meta-theoretical results, primarily semantic, were obtained by A. Tarski. In developing the ideas of Tarski and R. Carnap, H. B. Curry referred to metatheory as “epitheory,” reserving the term “metatheory” for somewhat more specialized usage.

REFERENCES

Kleene, S. C. Vvedenie v metamatematiku. Moscow, 1957. Chapters 3–8, 14, 15. (Translated from English.)
Kleene, S. C. Matematicheskaia logika. Moscow, 1973. (Translated from English.)
Church, A. Vvedenie v matematicheskuiu logiku, vol. 1. Moscow, 1960. See Introduction. (Translated from English.)
Curry, H. B. Osnovaniia matematicheskoi logiki. Moscow, 1969. Chapters 2 and 3. (Translated from English.)

IU. A. GASTEV

References in periodicals archive ?
As noted previously, the PhD program emphasizes nursing theory and meta-theory, which refines and expands nursing knowledge while the DNP utilizes this knowledge in their practice.
This is noteworthy, as cognitive theory is actually a meta-theory incorporating many different theories, each well defined and distinct in its own right (Werner, 1986).
Such detailed statistics are matched with the theory of self-determination, described in one psychology text book as an ``organism-dialectical meta-theory which begins with the assumption that people are active organisms with innate tendencies.
Because Oakley chooses to deal with each thinker one by one rather than with each subject of neoclassical critique, the book can sometimes feel like an introductory reader to a new economic meta-theory rather than a book that itself presents a coherent theory.
The result of this triangulation is a sociological meta-theory about the possible factors that affect an individual's career.
In his late writings, which inspired the mid-twentieth-century resurgence of the tradition that has come to be called Minimalist philosophy, Wittgenstein was forced to conclude that, in most cases, the prospects for a substantial meta-theory are meager.
early years, it attracted not only those who sought a meta-theory for
Instead, he imposes an additional global meta-theory about "the Real" that entails specific theological claims of its own.
Mercifully, too, his distaste for generalisation prevents him using his Olympian vantage-point to offer some unified meta-theory of architecture.