Spitzer Space Telescope

(redirected from Multiband Imaging Photometer for Spitzer)
Also found in: Acronyms.

Spitzer Space Telescope:

see infrared astronomyinfrared astronomy,
study of celestial objects by means of the infrared radiation they emit, in the wavelength range from about 1 micrometer to about 1 millimeter. All objects, from trees and buildings on the earth to distant galaxies, emit infrared (IR) radiation.
..... Click the link for more information.
; observatory, orbitingobservatory, orbiting,
research satellite designed to study solar radiation, electromagnetic radiation from distant stars, the earth's atmosphere, or the like. Because the atmosphere and other aspects of the earth's environment interfere with astronomical observations from the
..... Click the link for more information.
.

Spitzer Space Telescope

An infrared astronomy space observatory launched Aug. 2003. It was the fourth and last of NASA's Great Observatories and was also a significant scientific and technical element in the agency's long-term Origins Program. Lifted into space from Cape Canaveral, Florida, USA, by a Boeing Delta rocket, Spitzer was placed in an orbit around the Sun, following in the Earth's wake. Initially it was dubbed the Space Infrared Telescope Facility (SIRTF) but was renamed after launch to commemorate the US astrophysicist Lyman Spitzer, Jr, the first astronomer to propose placing a large telescope in space and one of the leading scientists involved in the development of the Hubble Space Telescope. The 950-kg Spitzer spacecraft consists of a reflecting telescope with a beryllium mirror measuring 8.5 millimeters in diameter (focal ratio f/12), in the focal plane of which lie three cryogenically cooled science instruments incorporating technically advanced, large-format infrared detector arrays. Spitzer is designed to carry out imaging and photometry over the wavelength range of 3–180 micrometers (μm), spectroscopy over 5–40 μm, and spectrometry over 50–100 μm. The telescope and detectors are surrounded by liquid helium, which maintains them at their operating temperature of less than 5.5 K. NASA astronomers hope to operate the Spitzer Space Telescope for five years or more, using it to identify and investigate dusty disks around nearby stars that may be planet nurseries, to peer into clouds of dust and gas that may be the cradles of newborn stars, and to gaze beyond the Milky Way at very luminous infrared galaxies powered by gigantic black holes.
Full browser ?