Gaussian elimination

(redirected from Naive Gaussian elimination)

Gaussian elimination

[¦gau̇·sē·ən ə‚lim·ə′nā·shən]
(mathematics)
A method of solving a system of n linear equations in n unknowns, in which there are first n- 1 steps, the m th step of which consists of subtracting a multiple of the m th equation from each of the following ones so as to eliminate one variable, resulting in a triangular set of equations which can be solved by back substitution, computing the n th variable from the n th equation, the (n- 1)st variable from the (n- 1)st equation, and so forth.