nanotechnology

(redirected from Nanoscientist)
Also found in: Dictionary, Thesaurus, Medical, Financial.

nanotechnology:

see micromechanicsmicromechanics,
the combination of minuscule electrical and mechanical components in a single device less than 1 mm across, such as a valve or a motor. Although micromechanical production processes and applications are still in the developmental stage, efforts have begun to
..... Click the link for more information.
.

nanotechnology

[¦nan·ō·tek′näl·ə·jē]
(engineering)
Systems for transforming matter, energy, and information that are based on nanometer-scale components with precisely defined molecular features.
Techniques that produce or measure features less than 100 nanometers in size.

Nanotechnology

Systems for transforming matter, energy, and information, based on nanometer-scale components with precisely defined molecular features. The term nan-otechnology has also been used more broadly to refer to techniques that produce or measure features less than 100 nanometers in size; this meaning embraces advanced microfabrication and metrology. Although complex systems with precise molecular features cannot be made with existing techniques, they can be designed and analyzed. Studies of nanotechnology in this sense remain theoretical, but are intended to guide the development of practical technological systems.

Nanotechnology based on molecular manufacturing requires a combination of familiar chemical and mechanical principles in unfamiliar applications. Molecular manufacturing can exploit mechanosynthesis, that is, using mechanical devices to guide the motions of reactive molecules. By applying the conventional mechanical principle of grasping and positioning to conventional chemical reactions, mechanosynthesis can provide an unconventional ability to cause molecular changes to occur at precise locations in a precise sequence. Reliable positioning is required in order for mechanosynthetic processes to construct objects with millions to billions of precisely arranged atoms.

Mechanosynthetic systems are intended to perform several basic functions. Their first task is to acquire raw materials from an externally provided source, typically a liquid solution containing a variety of useful molecular species. The second task is to process these raw materials through steps that separate molecules of different kinds, bind them reliably to specific sites, and then (often) transform them into highly active chemical species, such as radicals, carbenes, and strained alkenes and alkynes. Finally, mechanical devices can apply these bound, active species to a workpiece in a controlled position and orientation and can deposite or remove a precise number of atoms of specific kinds at specific locations.

Several technologies converge with nanotechnologies, the most important being miniaturization of semiconductor structures, driven by progress in microelectronics. More directly relevant are efforts to extend chemical synthesis to the construction of larger and more complex molecular objects. Protein engineering and supramolecular chemistry are active fields that exploit weak intermolecular forces to organize small parts into larger structures. Scanning probe microscopes are used to move individual atoms and molecules.

nanotechnology

/nan'-oh-tek-no"l*-jee/ Any fabrication technology in which objects are designed and built by the specification and placement of individual atoms or molecules or where at least one dimension is on a scale of nanometers.

The first unequivocal nanofabrication experiments took place in 1990, for example with the deposition of individual xenon atoms on a nickel substrate to spell the logo of a certain very large computer company.

Nanotechnology has been a hot topic in the hacker subculture ever since the term was coined by K. Eric Drexler in his book "Engines of Creation", where he predicted that nanotechnology could give rise to replicating assemblers, permitting an exponential growth of productivity and personal wealth.

See also nanobot.

http://lucifer.com/~sean/Nano.html.

nanotechnology

The science of developing materials at the atomic and molecular level in order to imbue them with special electrical and chemical properties. Nanotechnology, which deals with devices typically less than 100 nanometers in size, is making a significant contribution to the fields of computer storage, semiconductors, biotechnology, manufacturing and energy.

In the future, amazing nanotech-based products are expected, including extraordinarily tiny computers that are very powerful, building materials that withstand earthquakes, advanced systems for drug delivery and custom-tailored pharmaceuticals as well as the elimination of invasive surgery, because repairs can be made from within the body.

One Person Can Make a Breakthrough
Larry Bock, CEO of Nanosys, who helped launch more than a dozen successful biotech companies in his career, said that nanotech will impact even more industries than biotech. In an excerpted article from the March 2003 Nanotech Report, he compared nanotechnology with microelectronics. Bock said that "a single chemistry graduate student can create novel devices and device architectures not even imaginable or manufacturable by today's biggest microprocessor companies. That is because these devices are fabricated chemically, or from the bottom up. Existing microelectronics technology is fabricated by etching wafers, or from the top down." See AFM, STM, Buckyball, nanotube and MEMS.


Fixing One Cell at a Time
By 2020, scientists at Rutgers University believe that nano-sized robots will be injected into the bloodstream and administer a drug directly to an infected cell. This robot has a carbon nanotube body, a biomolecular motor that propels it and peptide limbs to orient itself. Because it is composed of biological elements such as DNA and proteins, it will be easily removed from the body. (Image courtesy of the Bio-Nano Robotics team at Rutgers University: Constantinos Mavroidis, Martin L. Yarmush, Atul Dubey, Angela Thornton, Kevin Nikitczuk, Silvina Tomassone, Fotios Papadimitrakopoulos and Bernie Yurke.)
References in periodicals archive ?
Computational nanoscientists model materials at different time scales as well as at different size scales.
Someday, the high-intensity X-rays may be used to make 3D images of the microscopic structures with which nanoscientists work.
He is one of the world's most renowned nanoscientists whose research accomplishments are complemented by his deep experience translating great science into successful companies.
a noted bionanoscientist, have assembled an eminent team of award winning nanoscientists, professional services specialists, and corporate/financial development experts to enhance and accelerate the intelligent growth of private and public "small tech" companies.
the nanomedicie challenge within NanoMission illustrates how nanoscientists are learning from nature to produce viable drug delivery mechanisms for today's market"
The NSTI Nanotech Conference and Exposition is the nation's largest conference of university and commercial nanoscientists and engineers, which last year hosted more than 3,000 nano professionals.
The NCI symposium is specifically targeted toward cancer researchers, nanoscientists, oncologists and other scientists interested in investigating the role of nanotechnology to address cancer research, diagnosis and treatment.
NSTI is one of the country's leading communities of nanotechnology scientists, university researchers and commercial firms, and is the producer of the nanotech Conference and Exposition, the nation's largest conference of university and commercial nanoscientists, which last year hosted more than 3,000 professional nanoscientists and researchers from university and commercial research centers.
This summit will bring together top nanoscientists from around the country and leading biomedical researchers and clinician investigators to explore the feasibility of applying nanotechnology solutions to fill unmet clinical needs," said Shuvo Roy, Ph.
Darrell Brookstein, a 32 year trading professional and author of Nanotech Fortunes, said, "Over 4 years, with the help of 7 nanoscientists, we identified 76 publicly traded companies whose futures are tied to advances in microelectronics, micro-fluidics, MEMs and nanotechnology.