(redirected from Non Biodegradable)
Also found in: Dictionary, Medical.


The destruction of organic compounds by microorganisms. Microorganisms, particularly bacteria, are responsible for the decomposition of both natural and synthetic organic compounds in nature. Mineralization results in complete conversion of a compound to its inorganic mineral constituents (for example, carbon dioxide from carbon, sulfate or sulfide from organic sulfur, nitrate or ammonium from organic nitrogen, phosphate from organophosphates, or chloride from organochlorine). Since carbon comprises the greatest mass of organic compounds, mineralization can be considered in terms of CO2 evolution. Radioactive carbon-14 (14C) isotopes enable scientists to distinguish between mineralization arising from contaminants and soil organic matter. However, mineralization of any compound is never 100% because some of it (10–40% of the total amount degraded) is incorporated into the cell mass or products that become part of the amorphous soil organic matter, commonly referred to as humus. Thus, biodegradation comprises mineralization and conversion to innocuous products, namely biomass and humus. Primary biodegradation is more limited in scope and refers to the disappearance of the compound as a result of its biotransformation to another product.

Compounds that are readily biodegradable are generally utilized as growth substrates by single microorganisms. Many of the components of petroleum products (and frequent ground-water contaminants), such as benzene, toluene, ethylbenzene, and xylene, are utilized by many genera of bacteria as sole carbon sources for growth and energy.

The process whereby compounds not utilized for growth or energy are nevertheless transformed to other products by microorganisms is referred to as cometabolism. Chlorinated aromatic hydrocarbons, such as diphenyldichloroethane (DDT) and polychlorinated biphenyls (PCBs), are among the most persistent environmental contaminants; yet they are cometabolized by several genera of bacteria, notably Pseudomonas, Alcaligenes, Rhodococcus, Acinetobacter, Arthrobacter, and Corynebacterium. Cometabolism is caused by enzymes that have very broad substrate specificity. See Bacterial growth

The use of microorganisms to remediate the environment of contaminants is referred to as bioremediation. This process is most successful in contained systems such as surface soil or ground water where nutrients, mainly inorganic nitrogen and phosphorus, are added to enhance growth of microorganisms and thereby increase the rate of biodegradation. The process has little, if any, applicability to a large open system such as a bay or lake because the nutrient level (that is, the microbial density) is too low to effect substantive biodegradation and the system's size and distribution preclude addition of nutrients.

Remediation of petroleum products from ground waters is harder to achieve than surface soil because of the greater difficulty in distributing the nutrients throughout the zone of contamination, and because of oxygen (O2) limitations.


The destruction of organic compounds by microorganisms.