signal transduction

(redirected from Signal transducer)
Also found in: Dictionary, Medical.

Signal transduction

The transmission of molecular signals from a cell's exterior to its interior. Molecular signals are transmitted between cells by the secretion of hormones and other chemical factors, which are then picked up by different cells. Sensory signals are also received from the environment, in the form of light, taste, sound, smell, and touch. The ability of an organism to function normally is dependent on all the cells of its different organs communicating effectively with their surroundings. Once a cell picks up a hormonal or sensory signal, it must transmit this information from the surface to the interior parts of the cell—for example, to the nucleus. This occurs via signal transduction pathways that are very specific, both in their activation and in their downstream actions. Thus, the various organs in the body respond in an appropriate manner and only to relevant signals. See Cell (biology)

All signals received by cells first interact with specialized proteins in the cells called receptors, which are very specific to the signals they receive. These signals can be in various forms. The most common are chemical signals, which include all the hormones and neurotransmitters secreted within the body as well as the sensory (external) signals of taste and smell. The internal hormonal signals include steroid and peptide hormones, neurotransmitters, and biogenic amines, all of which are released from specialized cells within the various organs. The external signals of smell, which enter the nasal compartment as gaseous chemicals, are dissolved in liquid and then picked up by specialized receptors. Other external stimuli are first received by specialized receptors (for example, light receptors in the eye and touch receptors in the skin), which then convert the environmental signals into chemical ones, which are then passed on to the brain in the form of electrical impulses.

Once a receptor has received a signal, it must transmit this information effectively into the cell. This is accomplished either by a series of biochemical changes within the cell or by modifying the membrane potential by the movement of ions into or out of the cell. Receptors that initiate biochemical changes can do so either directly via intrinsic enzymatic activities within the receptor or by activating intracellular messenger molecules. Receptors may be broadly classified in four groups that differ in their mode of action and in the molecules that activate them.

The largest family of receptors are the G-protein-coupled receptors (GPCRs), which depend on guanosine triphosphate (GTP) for their function. Many neurotransmitters, hormones, and small molecules bind to and activate specific G-protein-coupled receptors.

A second family of membrane-bound receptors are the receptor tyrosine kinases (RTKs). They function by phosphorylating themselves and recruiting downstream signaling components.

Ion channels are proteins open upon activation, thereby allowing the passage of ions across the membrane. Ion channels are responsive to either ligands or to voltage changes across the membrane, depending on the type of channel. The movement of ions changes the membrane potential, which in turn changes cellular function. See Biopotentials and ionic currents

Steroid receptors are located within the cell. They bind cell-permeable molecules such as steroids, thyroid hormone, and vitamin D. Once these receptors are activated by ligand, they translocate to the nucleus, where they bind specific DNA sequences to modulate gene expression. See Steroid

The intracellular component of signal propagation, also known as signal transduction, is receptor-specific. A given receptor will activate only very specific sets of downstream signaling components, thereby maintaining the specificity of the incoming signal inside the cell. In addition, signal transduction pathways amplify the incoming signal by a signaling cascade (molecule A activates several molecule B's, which in turn activate several molecule C's) resulting in an appropriate physiological response by the cell.

Several small molecules within the cell act as intracellular messengers. These include cAMP, cyclic guanosine monophosphate (cGMP), nitric oxide (NO), and Ca2+ ions. Increased levels of Ca2+ in the cell can trigger several changes, including activation of signaling pathways, changes in cell contraction and motility, or secretion of hormones or other factors, depending on the cell type. Increased levels of nitric oxide cause relaxation of smooth muscle cells and vasodilation by increasing cGMP levels within the cell. Increasing cAMP levels can modulate signaling pathways by activating the enzyme protein kinase A (PKA).

One of the most important functions of cell signaling is to control and maintain normal physiological balance within the body. Activation of different signaling pathways leads to diverse physiological responses, such as cell proliferation, death, differentiation, and metabolism. Signaling pathways in cells may also interact with each other and serve as signal integrators. For example, negative and positive feedback loops in pathways can modulate signals within a pathway; positive interactions between two signaling pathways can increase duration of signals; and negative interactions between pathways can block signals. See Cell nucleus, Cell organization, Endocrine system (vertebrate), Noradrenergic system

signal transduction

[′sig·nəl tranz‚dək·shən]
(cell and molecular biology)
The relaying of molecular signals (for example, as contained in a hormone) or physical signals (for example, sensory stimuli) from a cell's exterior to its intracellular response mechanisms.
References in periodicals archive ?
The aim of this proposal, which combines structural biology and live cell imaging, is to understand the function and signalling consequences of the multivalent interactions between Hh signal transducer proteins as well as their spatial and temporal regulation in the primary cilium.
The scientists were able to reverse obesity in mice that do not express Tyk2 by expressing a protein known as signal transducer and activator of transcription-3 (Stat3).
As part of the extension, the companies agree to add a secondgeneration antisense inhibitor to Lilly's oncology drug discovery and development portfolio, Signal Transducer and Activator of Transcription 3, a protein that regulates cell division and growth, and prevents cell death.
Members of the mitogen-activated protein kinase family of signal transduction molecules were induced in the kidney, and a transcription factor known as signal transducer and activator of transcription 1 was induced in the liver.
STAT1 is a signal transducer and activator of transcription that becomes phosphorylated when cells are treated with type I or type II interferons and leads to induction of specific gene expression, resulting in establishment of the antiviral state and the other known biological responses to interferons, including the inhibition of cell proliferation.
GLG Pharma is developing a series of patented inhibitors of activated Signal Transducer and Activators of Transcription 3 (p-STAT3).
Curcumin down-regulated expression of NF-kappaB, cyclooxygenase-2, and phosphorylated signal transducer and activator of transcription 3 in peripheral blood mononuclear cells from patients (most of whom had baseline levels considerably higher than those found in healthy volunteers).
Editor's note: FLLL32 reduced activation of the protein known as signal transducer and activator of transcription 3 (STAT3), which is elevated in approximately 82% of head and neck cancers and has been associated with cisplatin resistance.
We assessed maximal leptin-mediated binding of the transcription factor signal transducer and activator of transcription 3 (STAT3), and the response to high-fat feeding in lean leptin-resistant rats.

Full browser ?