Thermal Expansion

(redirected from Volume Expansion)
Also found in: Medical.

Thermal expansion

Solids, liquids, and gases all exhibit dimensional changes for changes in temperature while pressure is held constant. The molecular mechanisms at work and the methods of data presentation are quite different for the three cases.

The temperature coefficient of linear expansion αl is defined by Eq. (1),

where l is the length of the specimen, t is the temperature, and p is the pressure. For each solid there is a Debye characteristic temperature &THgr;, below which αl is strongly dependent upon temperature and above which αl is practically constant. Many common substances are near or above &THgr; at room temperature and follow approximate equation (2),
where l0 is the length at 0°C and t is the temperature in °C. The total change in length from absolute zero to the melting point has a range of approximately 2% for most substances.

So-called perfect gases follow the relation in Eq. (3),

where p is absolute pressure, v is specific volume, T is absolute temperature, and R is the so-called gas constant. Real gases often follow this equation closely. See Gas constant

The coefficient of cubic expansion αv is defined by Eq.(4)

, and for a perfect gas this is found to be 1/T. The behavior of real gases is largely accounted for by the van der Waals equation. See Kinetic theory of matter

For liquids, αv is somewhat a function of pressure but is largely determined by temperature. Though αv may often be taken as constant over a sizable range of temperature (as in the liquid expansion thermometer), generally some variation must be accounted for. For example, water contracts with temperature rise from 32 to 39°F (0 to 4°C), above which it expands at an increasing rate. See Thermometer

Thermal expansion

The temporary increase in volume or linear dimensions of materials when heated.

Thermal Expansion


the dimensional changes exhibited by a substance when it is heated.

A quantitative characterization of thermal expansion at constant pressure is provided by the isobaric thermal expansion coefficient

which is often called the coefficient of volume, or cubical, expansion. In practice the value of α is determined from the formula

Here, is the volume of the gas, liquid, or solid at the temperature T2 > T1; V is the initial volume of the substance; and the temperature difference T2T1 is assumed to be small.

Table 1. Isobaric coefficients of volume expansion of some gases and liquids at atmospheric pressure
SubstanceTemperature (°C)α [10–3(°C)–1]
Helium ...............0–1003.658
Hydrogen ...............0–1003.661
Oxygen ...............0–1003.665
Nitrogen ...............0–1003.674
Air (without CO2) ...............0–1003.671
Water ...............100.0879
Mercury ...............200.182
Glycerol ...............200.500
Benzene ...............201.060
Acetone ...............201.430
Ethyl alcohol ...............201.659

The thermal expansion of solids is characterized by, in addition to α, the coefficient of linear expansion

where l is the initial length of the solid in some chosen direction. In the general case of anisotropic solids, α = αx + αy + αz, where the linear expansion coefficients αx, αy, and αz along the x, y, and z crystallographic axes, respectively, are equal or unequal depending on the symmetry of the crystal. For crystals with cubic symmetry, for example, as for isotropic solids, αx = αy = αz and α ≈ 3α1.

For most substances, α > 0. Water, on the other hand, contracts when it is heated from 0° to 4°C at atmospheric pressure. The dependence of α on T is most pronounced in the cases of gases; for an ideal gas, α = 1/T. The dependence is less marked for liquids. For a number of substances, such as quartz and Invar, a is small and is virtually constant over a broad range of temperatures. As T → 0, α → 0. Tables 1 and 2 give the isobaric coefficients of volume and linear expansion of a number of substances at atmospheric pressure.

Table 2. Isobaric coefficients of linear expansion of some solids at atmospheric pressure
SubstanceTemperature (°C)α1 [10–6(°C)–1
diamond ...............201.2
graphite ...............2079
Silicon ...............3–1825
parallel to axis ...............4078
perpendicular to axis ...............4014.1
fused ...............0–1000.384
crown ...............0–100∼9
flint ...............0–100∼7
Tungsten ...............254.5
Copper ...............2516.6
Brass ...............2018.9
Aluminum ...............2525
Iron ...............2512

The thermal expansion of a gas is due to the increase in the kinetic energy of the gas particles as the gas is heated; this energy is used to perform work against the external pressure. In the case of solids and liquids, thermal expansion is associated with the asymmetry (anharmonicity) of the thermal vibrations of the atoms; as a result of this asymmetry, the interatomic distances increase with increasing T. The experimental determination of α and α1 is carried out by the methods of dilatometry. The thermal expansion of substances is taken into account in the designing of all installations, devices, and machines that operate under variable temperature conditions.


Novikova, S. I. Teplovoe rasshirenie tverdykh tel. Moscow, 1974.
Hirschfelder, J., C. Curtiss, and R. Bird. Molekuliarnaia teoriia gazov i zhidkostei. Moscow, 1961. (Translated from English.)
Perry, J. Spravochnik inzhenera-khimika, vol. 1. Leningrad, 1969. (Translated from English.)

thermal expansion

[′thər·məl ik′span·chən]
The dimensional changes exhibited by solids, liquids, and gases for changes in temperature while pressure is held constant.

thermal expansion

The change in length or volume which a material or body undergoes on being heated.
References in periodicals archive ?
5] Volume expansion therapy before surgery is also recommended, if appropriate.
Paradox Three: Accelerated volume expansion and rapidly declining prices erode cash operating margins, where the firm loses more the more it grows.
Cooking properties, including volume expansion, water uptake, solids loss and texture, changed in a similar fashion for rice samples dried using infrared heating, hot air and ambient air.
The volume expansion resolves if training is discontinued forseveral days.
The PPT 3000 is used extensively at this point of the design cycle to verify that the bottle design meets pressure, volume expansion and the shelf-life expectations of the customer.
Data from our laboratory by Fabri and colleagues (7) show that after volume expansion, aquatic-trained normotensive rats exhibited higher urine and sodium excretion.
This volume expansion can be accomplished in two ways: putting the patient on a high-salt diet for 3 days, which can generally be accomplished simply by eating some potato chips daily on top of a typically high-salt American diet, or by intravenous infusion of 2 L of normal saline over the course of 4 hours.
While global volume expansion has remained steady for several years, value growth accelerated in 2014, thanks to an improving outlook in key markets like Brazil.
Assessment of fluid responsiveness -- the ability of the circulation system to increase cardiac output in response to volume expansion -- is essential to guide fluid therapy and optimize preload.
Introducing a constraint where the volume expansion was limited to 40% and 60% was done by setting the initial volume of unfoamed material at heights of 8 mm and 12 mm in the mold and limiting their expansion to the 20 mm full-mold height.
0 million represent a 32 percent increase from last year's, boosted by volume expansion for main customers in the telecommunications segment.
The objective of SAIL's on- going modernisation is fourfold : Volume expansion, infusion of new technologies, along with phasing out of obsolete ones, enrichment of product mix and capacity expansion of captive mines to ensure higher raw material production to feed the manufacturing capacity.