X-ray crystallography


Also found in: Dictionary, Thesaurus, Medical, Acronyms, Wikipedia.

X-ray crystallography,

the study of crystal structures through X-ray diffraction techniques. When an X-ray beam bombards a crystalline lattice in a given orientation, the beam is scattered in a definite manner characterized by the atomic structure of the lattice. This phenomenon, known as X-ray diffraction, occurs when the wavelength of X-rays and the interatomic distances in the lattice have the same order of magnitude. In 1912, the German scientist Max von Laue predicted that crystals exhibit diffraction qualities. Concurrently, W. Friedrich and P. Knipping created the first photographic diffraction patterns. A year later Lawrence Bragg successfully analyzed the crystalline structures of potassium chloride and sodium chloride using X-ray crystallography, and developed a rudimentary treatment for X-ray/crystal interaction (Bragg's Law). Bragg's research provided a method to determine a number of simple crystal structures for the next 50 years. In the 1960s, the capabilities of X-ray crystallography were greatly improved by the incorporation of computer technology. Modern X-ray crystallography provides the most powerful and accurate method for determining single-crystal structures. Structures containing 100–200 atoms now can be analyzed on the order of 1–2 days, whereas before the 1960s a 20-atom structure required 1–2 years for analysis. Through X-ray crystallography the chemical structure of thousands of organic, inorganic, organometallic, and biological compounds are determined every year.

Bibliography

See M. Buerger, X-Ray Crystallography (1980).

X-ray crystallography

The study of crystal structure by x-ray diffraction techniques. For the experimental aspects of x-ray diffraction See X-ray diffraction

Structurally, a crystal is a three-dimensional periodic arrangement in space of atoms, groups of atoms, or molecules. If the periodicity of this pattern extends throughout a given piece of material, one speaks of a single crystal. The exact structure of any given crystal is determined if the locations of all atoms making up the three-dimensional periodic pattern called the unit cell are known. The very close and periodic arrangement of the atoms in a crystal permits it to act as a diffraction grating for x-rays. See Crystallography

x-ray crystallography

[′eks ‚rā ‚krist·əl′äg·rə·fē]
(crystallography)
The study of crystal structure by x-ray diffraction techniques. Also known as roentgen diffractometry.
References in periodicals archive ?
And, again, the explanation is that the work was instrumental in the creation of the science of x-ray crystallography.
Gilliland, Location of a Potential Transport Binding Site in a Sigma Class Glutathione Transferase by X-ray Crystallography, Proc.
Using X-ray crystallography we have solved the structure of the leptin binding domain of the receptor bound to a potential therapeutic antibody that blocks leptin binding.
In 2001, Kornberg published X-ray crystallography images that depicted how a yeast cell transfers data stored in its DNA.
Here he performs like service for Bernal (1901-71), widely known as Sage since his undergraduate days at Cambridge when he foresaw that X-ray crystallography could be used to study life.
Rigaku is pursuing a product-and service-based model for its x-ray crystallography business.
Current high-resolution methods such as X-ray crystallography and NMR have provided a vast array of structural detail for biological molecules, yet the output of these methods is limited by its static molecular view and ensemble averaging.
67 nm step height as determined by x-ray crystallography.
Explore the discovery of the helical structure of DNA from an X-ray crystallography diffraction pattern stemming from the work of William and Lawrence Bragg through to Rosalind Franklin and to Watson and Crick.
For the study, Luca Jovine at the Karolinska Institute in Huddinge, Sweden, and his colleagues used X-ray crystallography to work out the chemical structure of a stretch of mouse ZP3 that gives the protein its structural properties.
Emphasizing applications to biology, the broad coverage includes mass spectrometry and x-ray crystallography.