in chemistry, the value representing the relative quantity of a given component (independent constituent) in a physicochemical system (mixture, solution, melt). The most commonly used methods of expressing concentration are (1) mass fraction—the ratio of the mass of the given component to the mass of the entire system; this ratio multiplied by 100 yields the concentration in weight percent; (2) atomic, or mole, fraction—the ratio of the number of gram atoms (moles) of a given component to the total number of gram atoms (moles) of the system; this ratio multiplied by 100 yields the concentration in atom (mole) percent; and (3) volume fraction—the ratio of the volume of the given component to the total volume of the system; this ratio multiplied by 100 yields the concentration in volume percent.
The concentration of liquid systems is often expressed by the weight of the substance dissolved in 100 g (sometimes in 1 l) of solvent or by the number of moles of substance per 1,000 moles of solvent. In the study of solutions, the concepts of molarity (the number of moles of solute per 1 l of solvent) and molality (the number of moles of solute per 1,000 grams of solvent) are often used. In volumetric analysis, the concentration is expressed by normality (the number of gram equivalents of the active constituent per 1 l of solution) and by titer (the number of grams of active substance or the substance being determined per 1 ml of solution).
In practice, concentration is determined using both the standard methods of quantitative analysis and certain instrumental methods, which make it possible to perform rapid and sufficiently accurate calculations of the content of the main component (for example, determination of the concentration of aqueous solutions of acids, alkalis, salts, and ethyl alcohol by measuring density with the aid of a hydrometer).
S. A. POGODIN