(or characteristic vector). An eigenvector of a linear transformation is a vector that does not change direction under the transformation and is simply multiplied by a scalar. For example, the eigenvectors of a transformation composed of rotations about some axis and of contraction toward the plane perpendicular to the axis are vectors directed along the axis.
The coordinates x1x2,..., xn of the eigenvectors of a transformation of n-dimensional space with the matrix ║aik║ satisfy the system of homogeneous linear equations
where λ is an eigenvalue of the matrix. If the matrix of a transformation is Hermitian, then the eigenvectors are mutually perpendicular. As a result of a Hermitian transformation, a sphere becomes an ellipsoid whose major axes are eigenvectors of the transformation.