Encyclopedia

Genus of a Curve

The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Genus of a Curve

 

a number characterizing an algebraic curve. The genus of the nth degree curve f(x, y)= 0 is

where r is the number of double points. When more complex singular points are present, they are counted as the corresponding number of double points; for example, a cusp is counted as one double point, and a triple point is counted as two.

Second-degree curves are of genus 0. Third-degree curves can be of genus 0 or 1. For example, yx3= 0 is of genus 1. On the other hand, the semicubical parabola y2 – x3 = 0, which has one cusp, is of genus 0, as is the folium of Descartes x3 + y3 – 3axy = 0, which has one double point. Curves of genus 0 are called unicursal curves.

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.