Born Mar. 3, 1845, in St. Petersburg; died Jan. 6, 1918, in Halle. German mathematician.
Cantor graduated from the University of Berlin in 1867. He developed the theory of infinite sets and the theory of transfinite numbers. In 1874 he proved the uncountability of the set of all real numbers, thus establishing the existence of inequivalent (that is, having different powers) infinite sets; he formulated (1878) the general concept of the power of a set. Between 1879 and 1884, Cantor systematically set forth the principles of his study of infinity. He introduced the concepts of limit point and derived set, constructed an example of a perfect set, developed one of the theories of irrational numbers, and formulated one of the axioms of continuity. In 1897 he retired from scientific work. Cantor’s ideas encountered intense opposition from his contemporaries, in particular from L. Kronecker, but they subsequently exerted great influence on the development of mathematics.