the differential equations that describe the motion of a viscous fluid. These equations are named after L. Navier and G. Stokes. For an incompressible (density ρ = constant) and unheated (temperature T = constant) fluid, the Navier-Stokes equations projected on the axes of a rectangular Cartesian coordinate system (a system of three equations) have the form

Here t is the time; x, y, and z are the coordinates of a particle of fluid; vx, vy, and vz are the projections of the velocity of the particle; X, Y, and Z are the projections of the body force; ρ is the pressure; ν = μ/ρ is the kinematic viscosity coefficient (where μ is the dynamic viscosity coefficient), and
![]()
Two other equations are obtained by replacing x with y, y with z, and z with x.
The Navier-Stokes equations are used to determine vx, vy vz., and ρ as functions of x, y, z, and t. In order to close the system, we add to equations (1) a continuity equation, which for an incompressible fluid has the form
![]()
In order to integrate equations (1) and (2), we must be given the initial conditions (if the motion is not steady state) and the boundary conditions, which for a viscous fluid are the conditions of adhesion to rigid walls. In the general case of the motion of a compressible and heated fluid, the Navier-Stokes equations also take into account the variability of ρ and the temperature dependence of μ, changing the form of the equations. In this case, the equation of energy balance and the Clapeyron equation are also used.
The Navier-Stokes equations are used in the study of the motions of real liquids and gases; in most such specific problems, only various approximate solutions are sought.
S. M. TARG