The hypothesis, popular throughout the 19th century, went out of favor. The main problem was that it indicated that the Sun should still be spinning on the verge of rotational instability; it could not explain why the Sun has almost 99.9% of the mass of the Solar System but only about 2% of the total angular momentum. In addition, calculations showed that the rings would not condense to form planets. However, in a modified form, it is the basis of most modern ideas for the formation of the Sun and planets. See Solar System, origin. Compare encounter theories.
a cosmogonical hypothesis which assumes that the solar system (and celestial bodies in general) was formed out of a rarefied nebula. The term “nebular hypothesis” originated in the 19th century in connection with the Laplace nebular hypothesis. Later, the term was also used in Kant’s hypothesis and in other theories that assumed the formation of celestial bodies from nebulae of gas or dust. The term “nebular hypothesis” is not usually used in relation to modern cosmogonical hypotheses. (SeeCOSMOGONY.)