In fluid mechanics, the ratio ρvd/μ, where ρ is fluid density, v is velocity, d is a characteristic length, and μ is fluid viscosity. The Reynolds number is significant in the design of a model of any system in which the effect of viscosity is important in controlling the velocities or the flow pattern. In the evaluation of drag on a body submerged in a fluid and moving with respect to the fluids, the Reynolds number is important.
The Reynolds number also serves as a criterion of type of fluid motion. In a pipe, for example, laminar flow normally exists at Reynolds numbers less than 2000, and turbulent flow at Reynolds numbers above about 3000. See Dynamic similarity, Fluid mechanics, Laminar flow, Turbulent flow
one of the similarity criteria for flows of viscous fluids and gases, characterizing the relationship between inertial and viscous forces: Re = ρvl/μ, where ρ is the density, μ the dynamic viscosity coefficient of the fluid or gas, v the characteristic flow velocity, and l the characteristic length. Thus, for the flow in a circular cylindrical pipe, l = d, where d is the diameter of the pipe, and v = vav, where vav is the average flow velocity. For the flow of fluids or gases around bodies, l is the length or transverse dimension of the body, and v = v∞, where v∞ is the velocity of the undisturbed flow striking the body. The number was named after O. Reynolds.
The flow pattern of a fluid, characterized by the critical Reynolds number Recr, also depends on the Reynolds number. When Re < Recv only a laminar flow of the fluid is possible, and when Re > Recr, the flow may become turbulent. The value of Recr depends on the type of flow. For example, for the flow of a viscous fluid in a circular cylindrical pipe, Recr = 2,300.
S. L. VISHNEVETSKII