Encyclopedia

convex polytope

Also found in: Wikipedia.

convex polytope

[¦kän‚veks ′päl·i‚tōp]
(mathematics)
A bounded, convex subset of an n-dimensional space enclosed by a finite number of hyperplanes.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.
Mentioned in
References in periodicals archive
A small cover is a smooth closed manifold [M.sup.n] which admits a locally standard [Z.sup.n.sub.2]-action whose orbit space is a simple convex polytope.
A convex polytope satisfying these properties is called a Delzant polytope.
Consider a dimension n convex polytope [DELTA] [subset] [([R.sup.n]).sup.*].
A DOP is a convex polytope containing the object, constructed by taking a number k of appropriately oriented planes at infinity and bringing it closer to the object until they collide.
Any A(p(k)) and C(p(k)) belong to a convex polytope [OMEGA] defined by
Note that any convex polytope can be written in the form [[PI].sub.X](u) for suitable X and u.
The convexity theorem of Atiyah [1] and Guillemin-Sternberg [10] implies that [mu](M) is a convex polytope in [R.sup.n].
[5] shows that every arrangement of spheres (and hence every central arrangemen of hyperplanes) is combinatorially equivalent to some convex polytope, [9] proved that there is a relation between the number of lattice point on a sphere and the volume of it.
The point (Y1, Y2), governed by (18)-(19), can never leave the (N -1)-dimensional (here N = 3) convex polytope and by definition [Y.sub.3] = 1 - [Y.sub.1] - [Y.sub.2].
Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.