Encyclopedia

growth

Also found in: Dictionary, Medical, Financial, Idioms, Wikipedia.
(redirected from growing)

growth

1. Biology the process or act of growing, esp in organisms following assimilation of food
2. Pathology any abnormal tissue, such as a tumour
Collins Discovery Encyclopedia, 1st edition © HarperCollins Publishers 2005

What does it mean when you dream about growth?

A dream in which we witness something growing (e.g., a plant) can represent ways in which we have grown personally, or ways in which our life situation has changed and grown.

The Dream Encyclopedia, Second Edition © 2009 Visible Ink Press®. All rights reserved.

growth

[grōth]
(medicine)
Any abnormal, localized increase in cells, such as a tumor.
(physiology)
Increase in the quantity of metabolically active protoplasm, accompanied by an increase in cell number or cell size, or both.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.

compressor blade damage

compressor blade damageclick for a larger image
Various types of damages that compressor blades can sustain. Only one or two may take place simultaneously though these have been combined in this illustration.
The various types of damages to compressor blades and their appearances are as follows:
i. Bend. The blade gives the appearance of ragged edges. Smooth repair of the edges or surface in question can be carried out, but the extent of the damage that can be repaired is limited.
ii. Bow. The main source of this type of damage is a foreign object. The blade is bent at the tips and the edges.
iii. Burning. The damage is caused by overheating. The surface of the blade is discolored. If the overheating is severe, there may be some flow of material as well.
iv. Burr. A ragged or turn-out edge is indicative of this type of damage. This takes place during the grinding or cutting operation of the blade at the manufacturing stage.
v. Corrosion. Oxidants and corrosive agents, especially moisture present in the atmosphere, are the main reasons for the corrosion or pitting of the blades. Normally, regular washing is sufficient to prevent it. The blade gives a pitted appearance, and there is some breakdown of the surface of the blade. Also called pitting.
vi. Cracks. Excessive stress from shocks, overloading, or faulty processing of blades during manufacturing can cause cracks and result in their fracture.
vii. Dent. These can be caused by FOD (foreign-object damage) or strikes by dull objects like those in bird strikes. Minor dents can be repaired.
viii. Gall. This type of damage is from the severe rubbing of blades, in which a transfer of metal from one surface to another takes place.
ix. Gouging. The blade gives the appearance of displacing material from its surface, and a tearing effect is prominently visible. This type of damage is from the presence of a comparatively large cutting material or foreign body between moving parts.
x. Growth. The damage manifests itself in the form of elongation of the blades. Growth type of damage takes place because of continued and/or excessive heat and centrifugal force.
xi. Score. Deep scratches are indicative of scoring, which is caused by the presence of chips between surfaces.
xii. Scratch. Narrow and shallow scratches are caused by sand or fine foreign particles as well as by mishandling the blades.
xiii. Pitting. Pitting takes place because of atmospheric corrosion, especially seawater. The surface of the blade shows signs of pitting.
An Illustrated Dictionary of Aviation Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved

Growth

acorn
used to symbolize the beginning of growth. [Pop. Culture: Misc.]
mustard seed
kingdom of Heaven thus likened; for phenomenal development. [N.T.: Matthew 13:31–32]
Allusions—Cultural, Literary, Biblical, and Historical: A Thematic Dictionary. Copyright 2008 The Gale Group, Inc. All rights reserved.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Growth

 

the increase in an organism’s size caused by the accretion of cells, cell mass, and noncellular structures. A living system grows because anabolism predominates over catabolism.

In animals. During the development (ontogeny) of animals, growth is closely associated with qualitative changes, or differentiation. Growth and differentiation often do not occur simultaneously, but one does not exclude the other. The usual parameters of growth are changes in the mass (weight) or linear dimensions (length) of an individual or organ.

Growth is usually described by curves that characterize changes in body weight or length during ontogeny, by the absolute and relative increments occurring during a specific period of time, and by the specific growth rate. The growth process may sometimes be described quite accurately by a comparatively simple mathematical equation. There are empirical growth equations that describe factual information and are convenient for making calculations; their constants are not usually of biological significance. There also exist theoretical equations, based on such theoretical considerations as comparison of growth with a monomolecular chemical reaction or growth as the realization of a genetic program. Efforts are made to attach biological significance to the constants of this type of equation.

The formula of simple allometry is ordinarily used to express the quantitative relation between the growth of a particular organ and the growth of the individual as a whole: y = bxα, where y is the size of the organ, x the size of the organism, α the index of allometry, and b an empirical constant. An organ may grow at the same rate as the organism (α = 1; isometry), more rapidly than the organism (α > 1; positive allometry), or more slowly than the organism (α < 1; negative allometry).

The growth rate is higher in young animals and normally decreases with age. Some animals grow all their lives, although the growth rate may be low during maturity; examples are mollusks, fish, and amphibians. In other animals, growth ceases at a certain age, as in the case of higher insects and birds. In ontogeny, successive phases of development have different growth rates; in many animals, particularly mammals, the embryonal and postembryonal periods and the periods before and after the onset of puberty are distinct. In animals with a hard chitinous integument, such as insects and crustaceans, the body lengthens mainly during the molting periods.

The growth process is rhythmic. Seasonal and 24-hour rhythms have been studied more than others. Seasonal rhythms, related to the succession of seasons, are manifested by the annual layers formed in skeletal structures. Twenty-four-hour rhythms can be detected from the frequency of cell division and from changes in the size of the organism as a whole. There are other growth rhythms with different periodicity, such as the 15-day rhythms of marine mollusks, which are related to low and high tides.

Growth is influenced by both genetic and environmental factors. Genetically it is determined by the combined action of many genes whose individual effect is slight. However, some anomalies of growth, such as dwarfism and shortness of extremities, are caused by the action of individual genes. The most important environmental growth factors are food supply, temperature, humidity (for terrestrial animals), water salinity (for aquatic animals), and population density. An unfavorable environment may inhibit growth to the point where it stops, but after the inhibitory factor ceases to act, growth may resume at a high rate, in which case the animal reaches its normal size. This phenomenon is known as compensatory growth. Growth is regulated chiefly by hormones. In vertebrates, it is regulated by the hormones of the pituitary, thyroid, thymus, and sexual glands.

REFERENCES

Rost zhivotnykh: Sb. rabot. Moscow-Leningrad, 1935.
Fedorov, V. I. Rost, razvitie i produktivnost’ zhivotnykh. Moscow, 1973.
Kolichestvennye aspekty rosta organizmov. Moscow, 1975.
Brody, S. Bioenergetics and Growth. New York, 1945.
Needham, A. E. The Growth Process in Animals. London, 1964.

M. V. MINA and G. A. KLEVEZAL

In plants. Growth in plants is an irreversible increase in the plant’s height and weight caused by the formation of structural elements. The nature of growth depends on the aggregate of metabolic processes occurring in the plant. Total growth consists of the growth of cells, tissues, and organs. In higher plants, there are three stages of growth: embryonal (cell division and formation of the protoplasm’s components), extension (lengthening of the cells and thickening of their walls), and differentiation (formation of the main types of tissue from the meristem).

Plants can continue growing all their lives in local zones (meristems), in which the cells divide quickly. When a meristematic cell passes into the extension phase, numerous vacuoles appear within the cell. These vacuoles coalesce into a single one, the cell walls elongate, and the vacuoles absorb a large quantity of water. The large number of elongating cells increases, after which the specialized cells inherent in the different tissues are formed. Cell differentiation occurs both during extension and after the cessation of growth.

The types of growth that a specific organ manifests are determined by the location of the organ’s growth cone. Stems and roots grow at their apexes (apical growth). Leaves often grow at their base (basal growth). Organ growth, however, is often determined by the species. In grasses, for example, stem growth takes place at the base of the internode (intercalary growth).

The growth process in plants is rhythmic. Some growth rhythms depend both on environmental changes and on endogenous rhythms that are internally controlled and genetically fixed during the course of evolution. The growth processes are interrupted by lengthy periods of inhibition caused in the northern latitudes by the end of summer and approach of winter. Growth sometimes appears to stop, but even at these times morphogenesis may be occurring in the plant.

The various parts of all plants—cells, tissues, and organs—interact during all the stages of ontogeny. A general biological property underlies this interaction, namely, the integrity of the growing organism. This integrity is determined by the organism’s polarity and depends on external factors. The removal of certain organs or parts thereof disturbs a plant’s integrity and usually slows the growth of the other organs. The growth processes in plants are regulated by metabolites of a general type (trophic correlations) and by plant hormones (hormonal correlations). These processes also underlie plant movements (tropism and nastic movements).

REFERENCES

Timiriazev, K. A. Izbr. soch., vol. 3. Moscow, 1949.
Kholodnyi, N. G. Izbrannye trudy, vol. 2. Kiev, 1956.
Chailakhian, M. Kh. Osnovnye zakonomernosti ontogeneza vysshikh rastenii. Moscow, 1958.
Bünning, E. Ritmy fiziologicheskikh protsessov. Moscow, 1961. (Translated from German.)
Sabinin, D. A. Fiziologiia razvitiia rastenii. Moscow, 1963.
Gamburg, K. Z. “Vzaimosviaz’ deistviia gibberellina s auksinom.” In Reguliatory rosta i rost rastenii. Moscow, 1964.
Leopold, A. Rost i razvitie rastenii. Moscow, 1968. (Translated from English.)
Chailakhian, M. Kh. “Khimicheskaia reguliatsiia rosta i tsveteniia rastenii.” Vestnik AN SSSR, 1969, no. 10.
Kefeli, V. I. Rost rastenii. Moscow, 1973.

V. I. KEFELI

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
Mentioned in
References in periodicals archive
Parents can also sign up for the chance to win one of 50,000 home growing kits at innocentbiggrow.com/win/, with everything they need to take part at home with a pack of pea seeds, a compost disc and a growing guide.
Overall winner and fastest growing large business: Wilton Engineering Services Ltd, Middlesbrough Fastest growing small business: ICS Integrated Cable Services Ltd, Billingham Fastest growing medium business: UK Independent Medical Ltd, Durham 20?
Your Meltham Collaborative Growing team then allocate a group of people to the donated land.
These plants are all suitable for growing in our region, but always check the hardiness of any specific cultivar before purchasing:
However, with a growing number of more socially conscious and environmentally responsible options lining the shelves of coffee shops and supermarkets, consumers are in the driver's seat to make sure their morning cups of joe don't turn into cups of woe.
He says growing Canada yew should be no more expensive than most other crops in a regular plantation, the main expense being getting the plants propagated to eventually produce a plant in the $2 to $3 range.
In 1914, a ginkgo was found growing naturally in China's Chekiang province.
Through the seasons of a single year this story-poem follows a growing sunflower seed that meets the world of caterpillars, dogs, and weather with a compelling determination to grow.
Oily roots and product build-up can clog follicles and prevent your hair from growing as quickly as possible--the max is about a half-inch per month.
If he thinks you were growing hemp for "terrorist purposes,' he'll send you to Guantanamo Bay.
Frozen-food packaging is estimated at 300.7 million lb and is growing steadily at 5%/yr.
The first examines several arguably 'glamorous-less' leaders who prefer disciplined and rigorous approaches over "glamorous." Yet riskier strategies involving daring acquisitions, bold innovations or breakthrough business models--and have created potent strategies for driving fast growing companies that achieve double digit growth.
Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.