a simple machine consisting of a rigid element that pivots about a fixed support (fulcrum) and enables a smaller force to balance a larger one. The operating principle behind any type of lever can be expressed by the equality Ph1 = Qh2, where P and Q are the applied forces, and h1 and h2 are the lever arms, that is the perpendicular distances from the fulcrum to the line of action of each force.
If the fulcrum is positioned between the points where the forces are applied, the machine is called a first-class lever (Figure 1, a). If both forces are applied on the same side of the fulcrum, the machine is a second-class lever (Figure 1, b). With first-class levers, the forces must take the same general direction; with second-class levers, the forces assume different directions. Archimedes developed the theory of equilibrium for levers balanced by weights, and the general condition for lever equilibrium was worked out by P. Varignon in 1687. Levers are often used as simple lifting devices.