The general problems in the definition and identification of science 2 have increased recently as the result of a critical assault on conventional philosophies of knowledge and of science. Problems have arisen especially from the work of KUHN (1962) in which science is seen as the product of multiple perspectives and numerous groups and schools (see SCIENTIFIC PARADIGM) without any single identifiable set of procedures or identifying criteria making it possible to demarcate science as a whole. Neither POSITIVISM nor FALSIFICATIONISM, two previous main attempts to provide a ‘criterion of demarcation’ of science 2 , today find unreserved support (see also COVERING-LAW MODEL, SCIENTIFIC REALISM).
A widespread view is that, rather than being identifiable as a single pure form, science must now be seen as involving a complex process of social production, working upon and transforming previously existing knowledge, but with no single scientific method or straightforward distinction between science 2 and other forms of knowledge. As a socially located phenomenon, science must also be recognized as occurring in a context in which the cultural values and interests of scientists, and also the wider interests served by science, are always a potential influence on the knowledge produced (see also SOCIOLOGY OF SCIENCE, SOCIOLOGY OF KNOWLEDGE, OBJECTIVITY).
Some commentators have suggested that the only epistemological position now tenable is to recognize the inevitable relativity of scientific knowledge (see EPISTEMOLOGY, RELATIVISM). However, a return to broadly philosophical criteria for the identification of the ‘truth’ of hypotheses and theories remains possible. For example. HABERMAS (1970a & b) and FEYERABEND (1978) propose a ‘consensus’ or unrestricted discourse model of the conditions for knowledge. This sees the search for truth as requiring conditions which allow ‘open discourse’ on whatever evidence is offered in support of particular hypotheses, with the aim of arriving at a ‘warranted consensus’. Current thinking on science, however, leaves the identification of'science’ as against ‘nonscience’ (e.g. compared with ideology) a much more open question than hitherto.
the field of human endeavor that elaborates and theoretically systematizes objective knowledge of reality; one of the forms of social consciousness. In the course of historical development science becomes a productive force in society and a highly important social institution. The concept of science includes both activity aimed at gaining new knowledge and the result of such activity—the sum of the scientific knowledge acquired up to a given time, which constitutes the scientific conception of the world. The term “science” is also used to designate the various branches of scientific knowledge.
The immediate goals of science are to describe, explain, and predict processes and phenomena of reality employing the laws that science has discovered. In the broad sense, science aims at the theoretical representation of reality.
Science and other ways of apprehending reality. Inseparable from the practical way of comprehending the world, science as the creation of knowledge is a specific form of activity that differs significantly both from physical production and from other types of mental activity. Whereas in physical production knowledge is used only as an ideal means, in science the acquisition of knowledge constitutes the primary and direct goal, regardless of the form that the goal takes—whether the goal be a theoretical description, the flow charts of an industrial process, a summary of experimental data, or the formula of a preparation. Unlike those types of endeavor whose result is known in advance, before the activity begins, scientific work is scientific because it creates new knowledge—its result is fundamentally nontraditional. It is precisely for this reason that science acts as a force that continually revolutionizes other types of activity.
In contrast to the aesthetic (artistic) way of comprehending reality, as embodied in art, science strives for impersonal, objective knowledge that is generalized to the fullest possible extent; in art the results of artistic cognition are inseparable from the unique personal element. Art is often described as “thinking in images” and science as “thinking in concepts,” emphasizing that the former develops chiefly the sensory and imaginal aspect of man’s creative capacity, whereas the latter deals primarily with the intellectual and conceptual aspect. These differences, however, do not constitute an insurmountable barrier between science and art, which are linked by their creative and cognitive attitude toward reality. On the one hand, the aesthetic element often plays a significant role in scientific constructs, especially in the development of a theory, in a mathematical formula, or in the plan or idea for an experiment. The presence of the aesthetic element has been noted by many scientists. On the other hand, artistic works have a cognitive, as well as an aesthetic aspect. For example, K. Marx’ first insight into the socioeconomic nature of money in bourgeois society was based, in particular, on an analysis of the works of Goethe and Shakespeare (K. Marx and F. Engels, Iz rannikh proizv., 1956, pp. 616–20).
The relationship between science and philosophy as specific forms of social consciousness is complex. To some extent philosophy always provides science with a methodology of cognition and interprets its discoveries in terms of a world view. Philosophy and science are also linked by a common striving to present knowledge in a theoretical form and by a desire for logical proof. This striving reaches its highest fulfillment in dialectical materialism—a philosophy that consciously and openly allies itself with science and with the scientific method. Dialectical materialism studies the most general laws of the development of nature, society, and thought, relying on the findings of science.
Because of the direct relation between philosophy and Weltanshauung, in a society of antagonistic classes various philosophical schools relate differently to science and to the methods that it uses to arrive at knowledge. Some philosophical schools view science skeptically (for example, existentialism) or even with open hostility, whereas others attempt to dissolve philosophy in science (positivism), thereby disregarding philosophy’s function in shaping a world view. Only Marxism-Leninism gives a consistent solution to the problem of the relationship between philosophy and science. It adopts scientific methods and makes full use of scientific discoveries, at the same time taking into account the specific nature of the subject matter under study and the social role of philosophy. This makes Marxism-Leninism a truly scientific philosophy. Through philosophy and the general theory of the social sciences, all science is related to ideology and politics. Whenever class antagonisms are present this relationship accounts for the class character and partiihost’ (party-mindedness) of the social sciences, which border on philosophy, and for the important role of the natural sciences in shaping a world view.
Science, which is oriented toward the criteria of reason, has been the antithesis of religion, which rests on faith in the supernatural. Whereas science studies reality by means of reality itself and requires rational substantiation and practical confirmation of the knowledge derived, religion sees its main strength in revelation and in appeals to suprarational arguments and to the indisputable authority of canonical texts. In the modern world, however, religion has had to contend with the tremendous progress in science and the growth of its social role, and therefore it is vainly trying to find some way of reconciling its doctrine with scientific truths or even of adapting them to its own needs.
Principal stages in the development of science. Science originated in the practical experience of early human societies, in which the cognitive and productive aspects were fused. “The production of ideas, of conceptions, and of consciousness is at first directly interwoven with the material activity and the material intercourse of men, the language of real life. Conceiving, thinking, the mental intercourse of men appear at this stage as the direct efflux of their material behavior” (K. Marx and F. Engels, Feierbakh: Protivopolozhnost’ materialisticheskogo i idealisticheskogo vozzrenii, 1966, p. 29).
Initially, knowledge was practical, serving as a methodological guide to specific kinds of human activity. A great deal of knowledge of this type, constituting an important prerequisite for future science, was gathered in the ancient East (Babylonia, Egypt, India, China). Mythology, the first attempt to create an integrated, all-embracing system of concepts about surrounding reality, may be regarded as a remote prerequisite for science. These concepts were, however, far removed from science because of their religious and anthropomorphic character. Moreover, the criticism and destruction of mythological systems were preconditions for the emergence of science. Certain social conditions were also necessary for the rise of science—a sufficiently high level of development of production and social relations (resulting in the division of mental and physical labor and thereby making possible systematic scientific work) and a rich and broad cultural tradition permitting free assimilation of the achievements of different cultures and peoples.
These conditions had emerged by the sixth century B.C. in ancient Greece, where the first theoretical systems explaining reality in terms of natural principles (unlike mythology) were proposed by Thales, Democritus, and other thinkers. Having detached itself from mythology, nature philosophy at first syncretically combined science and the most speculative variants of philosophy. Nonetheless, this nature philosophy represented theoretical knowledge in which objectivity and logical persuasiveness were primary. Ancient Greek science, as represented by Aristotle and other thinkers, offered the first descriptions of the laws of nature, society, and thought, which, although imperfect, played a major role in the history of culture. These descriptions of laws introduced into cognitive activity a system of abstract concepts pertaining to the world as a whole. They firmly established the tradition of searching for objective, natural laws of the universe and laid the groundwork for the demonstrative method of presenting material, the most important aspect of science. At this time various branches of knowledge began to detach themselves from nature philosophy. The Hellenistic period of ancient Greek science saw the creation of the first theoretical systems in geometry (Euclid), mechanics (Archimedes), and astronomy (Ptolemy).
During the Middle Ages scholars of the Arab East and Middle Asia, notably Avicenna, Averroes, and al-Biruni, made an important contribution to the development of science by preserving the ancient Greek tradition and enriching it in a number of fields. In Europe the classical tradition was greatly transformed under the domination of the Christian religion, which shaped the characteristic medieval form of science—Scholasticism. Subordinate to religion, Scholasticism dealt primarily with the elaboration of Christian dogma; nevertheless, it made a significant contribution to the development of thought and to the art of theoretical debate. The development of alchemy and astrology also helped lay the foundation for science in the modern sense: alchemy established the tradition of the experimental study of natural substances and compounds, thus paving the way for chemistry, and astrology stimulated systematic observation of celestial bodies, thereby promoting the development of an experiential base for astronomy.
Science in the modern sense emerged in the 16th and 17th centuries to meet the needs of developing capitalist production. Apart from past traditions, two circumstances contributed to the rise of science. First, the domination of religious thought was undermined during the Renaissance, and the opposing conception of the world that evolved rested on scientific data. Science became an independent factor in intellectual life and the basis for a world view (Leonardo da Vinci, N. Copernicus). Second, in addition to observation, modern science introduced experimentation, which became the basic method of research and greatly expanded the scope of knowable reality by combining theoretical reasoning with a practical “testing” of nature. As a result, the cognitive capacity of science increased sharply. This profound transformation of science in the 16th and 17th centuries was the first scientific revolution, dominated by such figures as Galileo, J. Kepler, W. Harvey, R. Descartes, C. Huygens, and I. Newton.
As the pace of scientific progress quickened and as science assumed the dominant position in the emerging new conception of the world, scientific knowledge became a higher cultural value toward which most philosophical schools and movements oriented themselves. In the study of social phenomena, this reorientation was manifested in a search for the “natural principles” of religion, law, and morality, based on the concept of “human nature” (H. Grotius, B. Spinoza, T. Hobbes, J. Locke). As the bearer of the “light of reason,” science was regarded as the sole antithesis of all the evils of society, whose transformation would be possible only through enlightenment. “Thinking reason became the sole measure of all that exists” (F. Engels, in K. Marx and F. Engels, Soch., 2nd ed., vol. 20, p. 16).
The advances in mechanics, whose basic principles had been systematized and fully developed by the end of the 17th century, played a decisive role in the emergence of the mechanistic conception of the world, which soon became a universal world view (L. Euler, M. V. Lomonosov, P. Laplace). Not only physical and chemical phenomena, but also biological phenomena were perceived mechanistically, for example, the view of man as an integral organism (La Mettrie’s “man as a machine”). The ideals of mechanistic natural science became the basis for a theory of knowledge and for the study of scientific methods, which developed rapidly in this period. Philosophical doctrines concerning human nature, society, and the state arose in the 17th and 18th centuries as branches of the general doctrine of a unified world mechanism.
The reliance of modern science on experiments and the development of mechanics permitted the establishment of a link between science and production, although this link became permanent and systematic only in the late 19th century.
By the early 19th century a large body of material pertaining to various aspects of reality had been amassed, systematized, and theoretically substantiated on the basis of the mechanistic world view. It became increasingly apparent, however, that this material did not fit within the framework of a mechanistic explanation of nature and society and required a new, more profound, and broader synthesis that would encompass the results obtained by different sciences. The discovery of the law of the conservation and conversion of energy by R. Mayer, J. Joule, and H. Helmholtz made it possible to place chemistry and all branches of physics on a common ground. The cell theory, developed by T. Schwann and M. Schleiden, demonstrated the uniform structure of all living organisms. Darwin’s evolutionary theory in biology introduced the idea of development into natural science. The periodic table of the elements worked out by D. I. Mendeleev proved the existence of an intrinsic relation between all known types of matter. In the mid-19th century the socioeconomic, philosophical, and general scientific foundations were laid for a scientific theory of social development, which was created by the founders of Marxism. Marx and Engels revolutionized the social sciences and philosophy, making it possible to create a methodological base for a group of sciences dealing with society. A new stage in the history of social science began with V. I. Lenin, who developed all aspects of Marxism in a new historical era.
Major changes in scientific thought and a number of new discoveries in physics (such as the electron and radioactivity precipitated a crisis in modern classical science at the turn of the century and caused the collapse of its philosophical and methodological foundation—the mechanistic world view. The essence of this crisis was revealed by Lenin in his Materialism and Empiriocriticism. The crisis was resolved by another scientific revolution, which began in physics (M. Planck, A. Einstein) and subsequently encompassed all the main branches of science.
The convergence of science and production in the latter half of the 19th century stimulated collaborative scientific work, requiring new organizational forms. Twentieth-century science is closely bound up with technology, is increasingly becoming a direct productive force in society, is expanding its contact with all spheres of social life, and is assuming a greater social role. Contemporary science is the most important component, the moving force, of the scientific and technological revolution. The “points of growth” of 20th-century science have generally occurred when the internal logic of its development has coincided with the increasingly diverse social requirements imposed by modern society. By the mid-20th century, biology occupied a prominent position in natural science owing to such fundamental discoveries as the molecular structure of DNA (F. Crick and J. Watson) and the genetic code. An especially rapid rate of development may be seen in those scientific trends that, by integrating the achievements of various scientific branches, open up new prospects for the solution of major contemporary problems, such as the development of new energy sources and materials, the improvement of man’s relation to nature, the control of large systems, and space research.
The lawlike regularities and trends in the development of science. The history of science, which extends over the past 2,000 years, clearly reveals a number of general lawlike regularities and trends. As early as 1844, Engels formulated a thesis concerning the accelerated growth of science: “Science advances in proportion to the knowledge bequeathed to it by the previous generation” (K. Marx and F. Engels, ibid., vol. 1, p. 568). As contemporary research has demonstrated, this thesis can be expressed in the form of an exponential law characterizing the growth of certain parameters of science beginning in the 17th century. The amount of scientific activity doubles approximately every ten to 15 years, and this is reflected in the increasingly rapid growth in the number of scientific discoveries and the quantity of scientific data, as well as in the number of persons employed in science. According to data compiled by UNESCO, between the 1920’s and the early 1970’s, the number of scientific workers increased by 7 percent annually, whereas the population as a whole increased by only 1.7 percent annually. (In the 1970’s the growth indicators of science in the United States and certain other capitalist countries began to decrease, reflecting the “saturation” of science.) Consequently, the current number of scientists and scientific personnel is more than 90 percent of the total number of scientists in the entire history of science.
The development of science is cumulative: at each historical stage science sums up its past achievements. Every scientific discovery becomes an integral part of the entire body of scientific knowledge; it is not nullified by subsequent advances in knowledge but only reinterpreted and refined. The continuity of science assures its development in a unified, irreversible manner. Because of its continuity, science also serves as a kind of “social memory” of mankind that crystallizes in theoretical form man’s past experience in understanding reality and mastering its laws.
Scientific development is reflected not only in the increasing accumulation of knowledge. It also affects the entire structure of science. At each historical stage scientific knowledge employs a set of cognitive forms—fundamental categories and concepts, methods, principles, and schemes—which constitute the mode of thought. For example, observation as the basic method of obtaining knowledge is characteristic of the classical mode of thought; modern science relies on experimentation and on an essentially analytical approach, which directs thought to the simplest, indivisible elements of the reality under investigation; and contemporary science strives for an integral and multifaceted understanding of the objects under study. Once established, each specific structure of scientific thought opens the way for an extensive development of knowledge—for the application of knowledge to new spheres of reality. However, the accumulation of new material that cannot be explained on the basis of existing schemes necessitates a search for new, intensive ways of developing science. From time to time this results in a scientific revolution—a radical change in the primary components of the content structure of science—and in the introduction of new principles of cognition and new scientific categories and methods. The alternation of extensive and revolutionary periods of development, characteristic both of science as a whole and of its various branches, is eventually reflected in corresponding changes in the organizational forms of science.
The entire history of science shows a complex dialectical interplay of differentiation and integration: mastery of a growing number of new spheres of reality and a deepening of knowledge lead to the differentiation of science and to its division into ever more specialized fields. At the same time, the need to synthesize knowledge is constantly expressed in the trend toward the integration of the sciences. Initially new branches of science arose to deal with particular subjects of inquiry as new spheres and aspects of reality were drawn into the process of cognition. Contemporary science is increasingly shifting from a subject to a problem orientation, in which new fields of knowledge arise to resolve a major theoretical or practical problem. Many interdisciplinary sciences, such as biophysics, have arisen in this manner. The appearance of these sciences attests to the ongoing process of differentiation, but they also represent a starting point for integrating hitherto distinct disciplines.
Important integrative functions in certain branches of science are performed by philosophy, which gives a general outline of the scientific conception of the world, and by such individual disciplines as mathematics, logic, and cybernetics, which provide science with a system of uniform methods.
Structure of science. The disciplines that together constitute the system of science may be subdivided into three major groups (subsystems)—the natural, social, and engineering sciences, which differ in their subject matter and method. There is no well-defined boundary between these subsystems, and a number of scientific disciplines occupy an intermediate position. For example, industrial aesthetics brings together the engineering and social sciences; bionics integrates the natural and engineering sciences; and economic geography combines the natural and social sciences. Each of these subsystems in turn consists of a system of individual sciences that are coordinated and subordinated in various ways according to subject matter and method. The extremely complex problem of detailed classification has not yet been resolved (see below. Classification of sciences).
In addition to traditional research, conducted within the framework of a single branch of science, the problem-oriented character of contemporary science has stimulated extensive interdisciplinary and comprehensive research that draws upon several different disciplines whose combination is determined by the nature of the problem. An example of such research is the study of the conservation of nature, which integrates the applied sciences, biology, earth science, medicine, economics, mathematics, and other fields. Such studies, arising in connection with the fulfillment of major economic and social tasks, are typical of contemporary science.
The various sciences are generally classified as fundamental or applied depending on their orientation and their relation to practical activity. The fundamental sciences aim at gaining knowledge of the laws that govern the behavior and interaction of the basic structures of nature, society, and thought. These laws and structures are studied in “pure form,” regardless of possible application. The fundamental sciences are therefore sometimes called the pure sciences. The goal of the applied sciences is to employ the results of the fundamental sciences to solve not only cognitive but also practical social problems. Here, not only the attainment of truth but also the satisfaction of social needs serves as the criterion of success. A special branch of research is developing at the interface between the applied sciences and practice in which the results obtained by the applied sciences are converted into technological processes, designs, industrial materials, and so forth.
The applied sciences may emphasize either theoretical or practical problems. For example, electrodynamics and quantum mechanics play a fundamental role in contemporary physics; when applied to specific fields of inquiry they form such branches of theoretical applied physics as the physics of metals and semiconductor physics. The practical application of electrodynamics and quantum mechanics gives rise to such practical applied sciences as physical metallurgy and semiconductor technology, which are directly linked with production through specific research projects. All the engineering sciences are applied sciences.
The fundamental sciences generally outstrip the applied sciences, providing them with a theoretical reserve. In contemporary science the applied sciences account for as much as 80–90 percent of all research and appropriations. One of the major problems in organizing science today is that of establishing strong, planned links between the fundamental and applied sciences and of reducing the time necessary to complete the cycle “fundamental research-applied research-development-introduction.”
A distinction may be drawn between empirical and theoretical levels in research and in the organization of knowledge. Facts, which are obtained through observation and experimentation and which define the qualitative and quantitative characteristics of objects and phenomena, constitute empirical knowledge. Recurrence and the connections between empirical characteristics are expressed through empirical laws that are often probabilistic. The theoretical level of scientific knowledge presupposes the existence of abstract objects (constructs) and of theoretical laws expressing the relations between them; theoretical laws are formulated in order to provide an idealized description and explanation of empirical conditions—to understand the essence of phenomena. Theoretical constructs can be studied without resorting to sensory experience, but such study presupposes the possibility of moving to sensory experience by explaining existing facts and predicting new ones. The existence of a theory explaining in a unified manner the facts that fall within its purview is a criterion for scientific knowledge. A theoretical explanation may be qualitative or, making extensive use of mathematical apparatus, it may be quantitative; quantitative explanations are especially characteristic of contemporary natural science.
The development of a theoretical level brings about a qualitative change in the empirical level. Prior to the elaboration of a theory, the empirical material serving as the theory’s prerequisite is obtained through everyday experience and is described in everyday language, but when the empirical material attains the theoretical level it is “seen” through the prism of theoretical concepts, which begin to direct experimentation and observation —the principal methods of empirical investigation. At the empirical level, such methods as comparison, measurement, induction, deduction, analysis, and synthesis are used extensively. Such cognitive methods as hypothesis, modeling, idealization, abstraction, generalization, and mental experimentation are characteristic of the theoretical level.
All theoretical disciplines have their roots in practical experience. As the various sciences develop, however, they break away from their empirical base and develop in a strictly theoretical manner (for example, mathematics), reverting to experience only in practical applications.
The development of the scientific method was long the preserve of philosophy, which even today continues to play a leading role in working out methodological problems and which serves as a general methodology of science. In the 20th century, methodological means have become much more differentiated and are often worked out by science itself—for example, new categories (such as information) and specific methodological principles (correspondence principle) have been introduced through scientific development. Such branches of contemporary science as mathematics and cybernetics, as well as specially developed methodological approaches (for example, the systems approach), play an important methodological role. As a result, the relations between science and methodology have become highly complex, and the elaboration of methodological problems is assuming an increasingly important place within modern research.
Science as a social institution; organization and management in science. Science became a social institution in the 17th and early 18th centuries, when the first learned societies and academies were founded in Europe and the publication of scientific journals began. Earlier, science as an independent social institution was preserved and developed informally by traditions transmitted through books, instruction, correspondence, and personal contact between scientists.
Science remained “small-scale” until the late 19th century, employing relatively few people. At the turn of the century a new method of organizing science arose: large scientific institutes and laboratories, with extensive technical facilities, were founded, bringing scientific activity closer to the forms of modern industrial labor. “Small-scale” science was thus transformed into “large-scale” science. Contemporary science is becoming more deeply involved with all other social institutions, permeating not only industrial and agricultural production but also politics and the administrative and military fields. As a social institution science is in turn becoming the most important element in socioeconomic potential, requiring growing expenditures; this has made scientific policy one of the leading branches of social management.
With the division of the world into two camps after the Great October Socialist Revolution, science as a social institution developed under fundamentally different social conditions. Under capitalism, where antagonistic class relations prevail, scientific achievements are used largely by monopolies to make superprofits, to intensify the exploitation of workers, and to militarize the economy. Under socialism, scientific development is planned on a national scale in the interests of all the people. Economic development according to plan and the transformation of social relations are carried out scientifically, and science therefore plays a decisive role both in creating the material and technical base of communism and in shaping the new man. A developed socialist society creates unlimited opportunities for scientific advancement in the interests of the workers.
The rise of “large” science resulted primarily from a change in the relation of science to technology and production. Science was subordinate to production until the late 19th century, when it began to outstrip technology and production. The unified “science-technology-production” system emerged, in which science was the dominant element. Since the onset of the scientific and technological revolution science has been transforming the structure and content of material activity. “The production process is increasingly becoming the technological application of science, rather than a process subordinate to the direct skills of the worker” (K. Marx, in K. Marx and F. Engels, Soch., 2nd ed., vol. 46, part 2, p. 206).
In addition to the natural and engineering sciences, the social sciences are becoming increasingly important in modern society. They study man in all his diversity and provide guideposts for social development. There has been a growing convergence of the natural, engineering, and social sciences.
In contemporary science, problems of organizing and directing scientific development have become vitally important. The concentration and centralization of science have stimulated the founding of national and international scientific organizations and centers and the systematic undertaking of large-scale international projects. Governments have created special agencies for the direction of scientific activity, and the scientific policies formulated through these agencies assure the development of science in a goal-oriented manner. Initially scientific research was associated almost exclusively with universities and other higher educational institutions and was organized according to branch of science. In the 20th century there has been a proliferation of specialized research institutions. The declining rate of return from expenditures on scientific activity, especially in fundamental research, has stimulated a search for new forms of scientific organization. Among such new forms are scientific centers for research in particular branches of science (such as the Pushchino Center for Biological Research of the Academy of Sciences of the USSR in Moscow Oblast) and comprehensive scientific centers (Novosibirsk Scientific Center). Research subdivisions have been established to study various problems. To solve specific scientific problems, often of an interdisciplinary nature, special groups, comprising problem-oriented teams, have been created to carry out projects and programs, for example, the space program. Centralization in the supervision of scientific activity is increasingly being combined with decentralization and autonomy in research. Informal problem-oriented groups of scientists—”invisible groups”—are frequently formed. In addition, informal scientific trends and schools, which arose in the period of “small-scale” science, continue to exist and develop within the framework of “large-scale” science.
Scientific methods in turn are being employed more extensively in the organization and direction of other fields. The scientific organization of labor is becoming one of the chief means of increasing the efficiency of social production. Automatic production control systems, designed with the aid of computers and cybernetics, are being introduced. Increasingly, the human factor is becoming the focus of scientific management, particularly in man-machine systems. The results of scientific research are used to improve management principles for groups, enterprises, the state, and society as a whole. Like any social application of science, such use of scientific research serves different ends under capitalism and socialism.
National characteristics, important in the development of science, are reflected in the distribution of scientific personnel, in the national and cultural traditions influencing research in particular fields within the framework of scientific schools and trends, in the relationship between fundamental and applied research on a national scale, and in government policy toward scientific development, which determines, for example, the amount and purpose of appropriations. However, the results of science—scientific knowledge—are essentially international.
The development of science as a social institution is closely associated with the education and training of scientific personnel. The present scientific and technological revolution has opened a gap between the historically established tradition of secondary and higher education and the needs of society (including science). New methods of instruction employing the latest achievements in psychology, pedagogy, and cybernetics are being rapidly introduced to close the gap, and instruction in higher schools has tended to draw closer to research practices in science and production.
In education the cognitive function of science is closely linked to the task of bringing up students to. become full-fledged members of society and inculcating values and moral traits.
The experience of social life and Marxist-Leninist theory have proved conclusively that the ideal of the Enlightenment was Utopian and erroneous; according to this ideal the universal dissemination of scientific knowledge would automatically produce morally superior individuals and a just organization of society. This goal can be achieved only through a fundamental change in the social structure, through the replacement of capitalism by socialism.
Truth, which itself is morally and ethically neutral, is the highest value for science as a system of knowledge. Moral judgments may apply either to activity aimed at gaining knowledge (the scientist’s professional ethics require intellectual integrity and courage in his never-ending search for truth) or to the application of scientific discoveries (here the problem of the relationship between science and morality takes the form of scientists’ moral responsibility for the social consequences of their discoveries). The barbaric use of science by militarists (the Nazis’ experiments on human beings; Hiroshima and Nagasaki) has provoked vigorous social actions by progressive scientists, for example, the Pugwash conferences, aimed at preventing the inhumane application of science.
Various aspects of science are studied by a number of specialized branches, including the history of science, the logic of science, the sociology of science, and the psychology of scientific creativity. A new, comprehensive approach to the study of science that strives for a synthesis of its numerous aspects—the science of science—has developed rapidly since the mid-20th century.
Social role and future of science. In a society of antagonistic classes, the complexities and contradictions associated with the growing importance of science give rise to diverse and frequently contradictory evaluations of science. Scientism and antiscientism represent the two extremes of such evaluations. Scientism converts into absolutes the mode of thought and general methods of the exact sciences and declares science to be the supreme cultural value, frequently rejecting humanitarian and philosophical problems on the grounds that they have no cognitive significance. In contrast, antiscientism proceeds from the assumption that science is fundamentally inadequate for solving basic human problems. In its extreme forms this view regards science as hostile to man and denies that it exerts a positive influence on culture.
Unlike scientism and antiscientism, the Marxist-Leninist world view integrates the objective scientific approach with a viable humanistic orientation. It reveals the means for transforming natural and social reality through science, taking into account the significance of other ways of apprehending the world (which constitute the conditions and prerequisites for science) and combining them in the interest of man.
Bourgeois and Marxist views on the future of science also differ radically. Bourgeois ideas stem from an absolutization of certain aspects of modern science, which are uncritically projected into the future in an unaltered or hypertrophic form. Scientism holds that science will be the only sphere of intellectual culture in the future and will absorb the “irrational” aspect of culture. Antiscientism, on the other hand, condemns science either to extinction or to perpetual opposition to the essence of man, conceived in anthropological terms. The Marxist-Leninist outlook considers contemporary science as a historically conditioned method of producing and organizing knowledge. It holds that in the future science will erase the boundaries separating its various branches, will be further enriched by methodological elements, and will converge with other ways of apprehending the world intellectually. These trends will create the conditions necessary for the emergence of a new, unified science of the future, oriented toward man and his universal creative ability to apprehend and transform reality. “Natural science subsequently will include the science of man to the same extent that the science of man will include natural science: they will be one” (K. Marx and F. Engels, Iz. rannikh proizv., 1956, p. 596). Such a science of the future, harmoniously combining cognitive, aesthetic, moral, and philosophical elements, will correspond to the universal nature of labor under communism, whose immediate goal is the all-round development of man as an end in itself.
Table 2. Classification of the social and philosophical sciences | |||
---|---|---|---|
Social sciences | Social sciences | Social sciences | Philosophical sciences |
Political economy— the science of the economic base | The science of the political and legal superstructure— the theory of the state, law, and party | The science of the ideological superstructure— the various forms of social consciousness that fall within this area,including philosophy | Philosophy |
Table 4. Linear classification | |
---|---|
Philosophical sciences | |
Dialectics | |
Logic | |
Mathematical sciences | |
Mathematical logic | |
Applied mathematics, including cybernetics | |
Mathematics | |
Natural and engineering sciences | |
Astronomy | |
Space exploration | |
Astrophysics | |
Physics | |
Applied physics | |
Chemical physics | |
Physical chemistry | |
Chemistry | |
Industrial chemical sciences, including metallurgy | |
Geochemistry | |
Geophysics | |
Geology | |
Mining | |
Physical geography | |
Biology | |
Agricultural sciences | |
Human physiology | |
Medical sciences | |
Anthropology | |
Social sciences | |
History | |
Archaeology | |
Ethnology | |
Economic geography | |
Socioeconomic statistics | |
The science of the base and superstructures: political economy, political science, jurisprudence, history of art, etc. | |
Linguistics | |
Psychology | |
Pedagogy and other sciences |