Encyclopedia

pressure

Also found in: Dictionary, Medical, Acronyms, Wikipedia.
(redirected from systolic pressure)

pressure

1. the normal force applied to a unit area of a surface, usually measured in pascals (newtons per square metre), millibars, torr, or atmospheres.
Collins Discovery Encyclopedia, 1st edition © HarperCollins Publishers 2005

Pressure

The ratio of force to area. Atmospheric pressure at the surface of Earth is in the vicinity of 15 lbf/in.2 (1.0 × 105 Pa). Pressures in enclosed containers less than this value are spoken of as vacuum pressures; for example, the vacuum pressure inside a cathode-ray tube is 10-8 mmHg, meaning that the pressure is equal to the pressure that would be produced by a column of mercury, with no force acting above it, that is 10-8 mm high. This is absolute pressure measured above zero pressure as a reference level. Inside a steam boiler, the pressure may be 800 lbf/in.2 (5.5 × 106 Pa) or higher. Such pressure, measured above atmospheric pressure as a reference level, is gage pressure, designated psig. See Pressure measurement

McGraw-Hill Concise Encyclopedia of Physics. © 2002 by The McGraw-Hill Companies, Inc.

pressure

The force per unit surface area at any point in a gas or liquid. The pressure of a gas is proportional to temperature and density: at constant temperature, as the density is increased the pressure increases accordingly. This law of classical physics does not apply to degenerate matter.
Collins Dictionary of Astronomy © Market House Books Ltd, 2006

pressure

[′presh·ər]
(mechanics)
A type of stress which is exerted uniformly in all directions; its measure is the force exerted per unit area.
McGraw-Hill Dictionary of Scientific & Technical Terms, 6E, Copyright © 2003 by The McGraw-Hill Companies, Inc.

pressure

The force per unit area exerted by a homogeneous liquid or gas on the walls of its container.
McGraw-Hill Dictionary of Architecture and Construction. Copyright © 2003 by McGraw-Hill Companies, Inc.
The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Pressure

 

a physical quantity characterizing the intensity of normal forces (perpendicular to the surface) with which one body acts on another’s surface (for example, the foundations of a building acting on the ground, a liquid acting on the walls of a vessel, and gas in the cylinder of a motor acting on the piston). If the forces are distributed uniformly over the surface, then the pressure ρ on any part of the surface i s p = F/S, where 5 is the area of the part and F is the sum of the forces applied perpendicular to it. If the distribution of forces is nonuniform, this equality gives the mean pressure on the given small area, whereas at the limit, with S tending toward zero, it gives the pressure at a given point. If the distribution of forces is uniform, the pressure at all points of the surface is the same; if the distribution is nonuniform, the pressure varies from point to point.

For a continuous medium, the concept of pressure at each point in the medium is similarly introduced; it plays an important part in the mechanics of liquids and gases. At any point in a quiescent liquid the pressure in all directions is the same;

Table 1. Conversion of units of pressure
 Nlm2barkgflcm2atmmm Hgmm H20
1 N/m2(Pascal).................110-51.01972 x 10-5;0.98692 x 10-5750.06 x 10-50.101972
1 bar = 106dynes/cm2.................10511.019720.98692750.061.01972 x 104
1 kgf/cm2 = 1 at.................0.980665 x 1050.98066510.96784735.56104
1 atm.................1.01325 x 1051.013251.033217601.0332 x 104
1 mm Hg (torr).................133.3221.33322 x 10-31.35951 x 10-31.31579 x10--3113.5951
1 mm H20.................9.806659.80665 x 10-5;10-49.67841 x 10-57.3556 x 10-41

this is true also of moving liquids or gases, if they may be considered ideal (frictionless). In a viscous liquid the value of the mean pressure for three mutually perpendicular directions is taken to be the pressure at a given point.

Pressure plays an important part in physical, chemical, mechanical, and biological phenomena.

S. M. TARG

In a gaseous medium pressure is associated with the transfer of momentum during collisions of thermally moving gas molecules with each other or with the surface of bodies adjacent to the gas. The pressure in gases, which may be called thermal, is proportional to the temperature (the kinetic energy of the particles). In condensed mediums (liquids and solids), unlike gases, in which the mean distances between randomly moving particles are much greater than the size of the particles themselves, interatomic distances are comparable to atomic dimensions and are determined by the equilibrium of interatomic (intermolecular) forces of repulsion and attraction. When atoms approach one another repulsion forces increase, bringing about so-called cold pressure. In condensed mediums the pressure also has a “thermal” component, which is associated with the thermal vibrations of the atoms (nuclei). Given a steady or diminishing volume of a condensed medium, the thermal pressure rises as the temperature increases. At temperatures of about 104 ° K or more, thermal excitation of electrons makes an appreciable contribution to the thermal pressure.

Pressure is measured with manometers, barometers, and vacuometers, as well as with various pressure sensors.

Units of pressure have the dimensions of force divided by area. In the International System of Units, the unit of pressure is the newton per sq m (N/m2); in the Mks system, it is the kilogram-force per sq cm (kgf/cm2). Subsidiary units of pressure also exist—for example, the physical atmosphere (atm), the technical atmosphere (at), the bar, and mm of water and mercury columns (torr), by means of which the pressure measured is compared with the pressure of a column of liquid (water or mercury). (See Table 1.)

In the USA and Great Britain pressure is expressed in pounds-force per square inch (lbf/in.2), poundals per square foot (pdl/ft2), inches of water (in. H20), feet of water (ft H20), and inches of mercury (in. Hg); 1 lbf/in.2 = 6,894.76 N/m2; 1 pdl/ft2 = 1.48816 N/m2; 1 in. H20 = 249.089 N/m2; 1 ft H20 =2,989.07 N/m2; 1 in. Hg = 3,386.39 N/m2.

L. D. LIVSHITS

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
Mentioned in
References in periodicals archive
Similarly this study favors our findings of regression of right ventricular systolic pressure by demonstrating that the significantly increased RV functions in the study population without significant pulmonary HT, and maintained its improved function in the mid-term follow up also.
In a sepsis study systolic pressure variation predicted the response of cardiac output to volume load better than either PCWP or left ventricular end-diastolic area, as determined by echocardiography.
These cyclic changes in systolic pressure of pulsus paradoxus can be observed by continuous intra-arterial pressure monitoring (See Figure One).
This put them in the age group most likely to have high systolic pressure, and meant they were old enough to have been exposed to significant amounts of lead before public policy changes in the 1970s reduced environmental lead from gasoline, paint, and other sources.
The first pulse sound, or the systolic pressure, should be recorded for use in calculation of the ABI.
Women who either initiated or resumed using OCs experienced a statistically significant rise of about 4 mm Hg in the systolic pressure and 1 mm Hg in the diastolic pressure.
At the other extreme were women who smoked, were 35 or older, had a systolic pressure of 135 mm Hg or greater, had a history of early preeclampsia (occurring before 37 weeks), and had not used folate supplementation.
Both systolic and diastolic pressure readings are important, but systolic pressure should be watched more carefully in people over 50 years of age.
The first number is called the systolic pressure and shows the pressure in your arteries when your heart is forcing blood through them.
The first blood pressure number is the systolic pressure, the force imparted to blood as it is ejected from the heart into the circulation.
The total is 420 because there are 15 different age-specific threshold pressures for children aged 3-17 years, 7 different height-specific threshold pressures between the 5th and 95th height percentiles, different thresholds for girls and boys, and different thresholds for diastolic and systolic pressure.
Note the number on the dial, which is the systolic pressure. This is the beginning of the flow of blood past the cuff.
Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.