Wind in a dream may represent turmoil in the dreamer’s emotions. It can also indicate the energy available for launching in new directions in life.
the movement of air in the atmosphere almost parallel to the earth’s surface. Wind is usually understood to mean the horizontal component of that movement; sometimes the vertical component, which is hundreds of times less than the horizontal, is also meant. The vertical component of wind attains significant magnitude only in special cases: in clouds when there is strongly developed convection, or in the mountains when air descends along a slope.
Wind arises as a result of uneven horizontal distribution of pressure, which in turn is caused by the inequality of temperature in the atmosphere. Under the influence of pressure drops, the air experiences acceleration directed from high pressure to low. However, along with the initiation of movement, other forces begin to act upon the air: the deflecting force of the earth’s rotation (Coriolis force), friction, and in curved trajectories, centrifugal force. The influence of friction is substantial only in the lower hundreds of meters (in the friction layer). With altitude the effect of friction gradually diminishes, and wind velocity increases. In free atmosphere, above the friction layer, the wind is almost a geostrophic wind.
In the lower layer of the atmosphere, which is a few hundred meters thick and in which friction is substantial, the wind is deflected from the isobars in the direction of low pressure. The magnitude of the angle formed by the wind and the isobar changes according to the character of the underlying surface, the altitude, and also time. Over the sea this angle is 10°-20°; over dry land, 40°-50°. The angle gradually diminishes to zero with increasing altitude.
Wind is characterized by velocity and direction. The wind velocity at the earth’s surface is measured with an anemometer and is expressed in m/sec, km/hr, or knots. Wind velocity may also be approximately estimated visually by the action of the wind on objects; in such cases it is expressed in arbitrary units (the Beaufort scale). Wind direction is determined by a wind vane, streamer, wind sock, and so on and is indicated by the azimuth of the point from which it is blowing. Wind direction is expressed either in degrees or in rhumbs according to a 16-rhumb system (N, NNE, NE, ENE, E, ESE, and so on). In the free atmosphere, the velocity and direction of the wind are measured by theodolitic and radiotheodolitic observations of free-flying pilot balloons.
Wind velocity and direction always fluctuate to a greater or lesser degree. These fluctuations are called gustiness and are associated with atmospheric turbulence. In making observations, the mean values of wind velocity and direction are usually given. Wind velocities of 5-8 m/sec are considered moderate; over 14 m/sec, strong; on the order of 20-25 m/sec, a gale; and over 30 m/sec, a hurricane. An abrupt short-term increase in wind up to 20 m/sec is called a squall. In tropical cyclones, individual gusts may reach 100 m/sec. The complete absence of wind (calm) is sometimes observed at the earth’s surface. In the troposphere, wind velocity increases with altitude, reaching a maximum at an altitude of 8-10 km. So-called jet streams, with velocities exceeding 60-70 m/sec, are often observed here.
Wind velocity and direction have a clearly expressed daily cycle. At night, the wind velocity at the earth’s surface reaches a minimum, and in the afternoon hours it reaches a maximum. The daily cycle of wind is especially well expressed in the summer on clear days over steppe or desert regions; no daily wind cycle is observed over the sea.
The annual cycle of wind velocity depends substantially on the characteristics of the total atmospheric circulation and also on local conditions. Over the greater part of the European USSR, wind velocity reaches its maximum in the winter and its minimum in the summer. However, in Eastern Siberia, for example, minimum wind velocity is observed in the winter, and the wind becomes stronger in the summer.
Local winds, which are usually associated with features of local circulation, local topography, and so on, are observed in a number of places on the globe.