Georg Cantor

The following article is from The Great Soviet Encyclopedia (1979). It might be outdated or ideologically biased.

Cantor, Georg

 

Born Mar. 3, 1845, in St. Petersburg; died Jan. 6, 1918, in Halle. German mathematician.

Cantor graduated from the University of Berlin in 1867. He developed the theory of infinite sets and the theory of transfinite numbers. In 1874 he proved the uncountability of the set of all real numbers, thus establishing the existence of inequivalent (that is, having different powers) infinite sets; he formulated (1878) the general concept of the power of a set. Between 1879 and 1884, Cantor systematically set forth the principles of his study of infinity. He introduced the concepts of limit point and derived set, constructed an example of a perfect set, developed one of the theories of irrational numbers, and formulated one of the axioms of continuity. In 1897 he retired from scientific work. Cantor’s ideas encountered intense opposition from his contemporaries, in particular from L. Kronecker, but they subsequently exerted great influence on the development of mathematics.

WORKS

Gesammelte Abhandlungen mathematischen und philosophischen Inhalts Berlin, 1932.
In Russian translation:
“Uchenie o mnozhestvakh.” In the collection Novye idei v matematike, no. 6. St. Petersburg, 1914.
The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.
Copyright © 2003-2025 Farlex, Inc Disclaimer
All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.