aerothermodynamics


Also found in: Dictionary.

Aerothermodynamics

Flow of gases in which heat exchanges produce a significant effect on the flow. Traditionally, aerodynamics treats the flow of gases, usually air, in which the thermodynamic state is not far different from standard atmospheric conditions at sea level. In such a case the pressure, temperature, and density are related by the simple equation of state for a perfect gas; and the rest of the gas's properties, such as specific heat, viscosity, and thermal conductivity, are assumed constant. Because fluid properties of a gas depend upon its temperature and composition, analysis of flow systems in which temperatures are high or in which the composition of the gas varies (as it does at high velocities) requires simultaneous examination of thermal and dynamic phenomena. For instance, at hypersonic flight speed the characteristic temperature in the shock layer of a blunted body or in the boundary layer of a slender body is proportional to the square of the Mach number. These are aerothermodynamic phenomena.

Two problems of particular importance require aerothermodynamic considerations: combustion and high-speed flight. Chemical reactions sustained by combustion flow systems produce high temperatures and variable gas composition. Because of oxidation (combustion) and in some cases dissociation and ionization processes, these systems are sometimes described as aerothermochemical. In high-speed flight the kinetic energy used by a vehicle to overcome drag forces is converted into compression work on the surrounding gas and thereby raises the gas temperature. Temperature of the gas may become high enough to cause dissociation (at Mach number ≥7) and ionization (at Mach number ≥12); thus the gas becomes chemically active and electrically conducting. See Mach number

aerothermodynamics

[‚e·rō‚thər·mō·dī′nam·iks]
(fluid mechanics)
The study of aerodynamic phenomena at sufficiently high gas velocities that thermodynamic properties of the gas are important.

Aerothermodynamics

Flow of gases in which heat exchanges produce a significant effect on the flow. Traditionally, aerodynamics treats the flow of gases, usually air, in which the thermodynamic state is not far different from standard atmospheric conditions at sea level. In such a case the pressure, temperature, and density are related by the simple equation of state for a perfect gas; and the rest of the gas's properties, such as specific heat, viscosity, and thermal conductivity, are assumed constant. Because fluid properties of a gas depend upon its temperature and composition, analysis of flow systems in which temperatures are high or in which the composition of the gas varies (as it does at high velocities) requires simultaneous examination of thermal and dynamic phenomena. For instance, at hypersonic flight speed the characteristic temperature in the shock layer of a blunted body or in the boundary layer of a slender body is proportional to the square of the Mach number. These are aerothermodynamic phenomena.

Two problems of particular importance require aerothermodynamic considerations: combustion and high-speed flight. Chemical reactions sustained by combustion flow systems produce high temperatures and variable gas composition. Because of oxidation (combustion) and in some cases dissociation and ionization processes, these systems are sometimes described as aerothermochemical. In high-speed flight the kinetic energy used by a vehicle to overcome drag forces is converted into compression work on the surrounding gas and thereby raises the gas temperature. Temperature of the gas may become high enough to cause dissociation (at Mach number ≥7) and ionization (at Mach number ≥12); thus the gas becomes chemically active and electrically conducting. See Combustion, Hypersonic flight, Jet propulsion, Rocket propulsion

References in periodicals archive ?
This reference presents theory, methods, and equations in aerothermodynamics for turbomachinery applications, focusing on rigorous mathematical derivation of the equations governing flow and detailed descriptions of the numerical methods used to solve the equations.
Within the present activity an aerothermodynamics assessment of a spiked/bullet shape entry configuration will be performed analysing the gas chemistry during the entry the resulting heating and the required thermal protection systems the trajectory turnover and the associated drag and stability performance of the breaking system the effect of the wind and the controllability of the impact conditions.
Some are part of the impact assessment and aerothermodynamic heating teams, and others will be watching during the orbiter's return to Earth.
The Structures, Materials, Aerodynamics, Aerothermodynamics, and Acoustics Research and Technology contract is valued at up to $400 million over five years.
Analyzing the aerothermodynamics of entry systems, aeronautics and space vehicle trajectories;
Proposal Title: Advanced Aerothermodynamics Simulation Tools for Heavy Mass Mars Entry Systems (HMMES) Design and Optimization
He was responsible for the management and direction of research and technology endeavors in aerodynamics, aerothermodynamics, acoustics, structures, materials and airborne systems in support of NASA's aeronautics, exploration systems, science and space operations.
His expertise is in the fields of hypervelocity physics, plasma dynamics, aerothermodynamics, and materials synthesis.