(redirected from axilla thermometer)
Also found in: Dictionary, Thesaurus, Medical, Wikipedia.


instrument for measuring temperaturetemperature,
measure of the relative warmth or coolness of an object. Temperature is measured by means of a thermometer or other instrument having a scale calibrated in units called degrees. The size of a degree depends on the particular temperature scale being used.
..... Click the link for more information.
. Galileo and Sanctorius devised thermometers consisting essentially of a bulb with a tubular projection, the open end of which was immersed in a liquid. Heating or cooling the bulb affected the height of the column of liquid in the tube, on which a scale was marked. Over a century later appeared the three thermometers now most widely used—the Fahrenheit, the centigrade (Celsius), and the Réaumur (used to some extent in parts of Europe). The first, invented by Fahrenheit c.1714 in Danzig, initiated the use of mercury as a heat-measuring medium; the thermometer of Réaumur, invented c.1730, used alcohol; the Celsius, invented by Anders Celsius at Uppsala (probably 1742) is now most used in laboratory work. The clinical thermometer is a small tubular instrument of rather thick glass. It consists essentially of a small vacuum tube of uniform bore closed at one end and connected at the other with a mercury chamber (either a bulb or a short tube of larger bore). A Celsius or a Fahrenheit scale (or both) is etched on the front of the thermometer; opposite this the glass is milky or semiopaque, to facilitate reading the temperature. When heat is applied, the mercury expands and rises from the chamber past a narrowed point and up the small tube. This narrowed point prevents the mercury from sinking back until shaking forces it down. A thermocouple can be used as a thermometer for measuring temperatures outside the range of liquid-in-glass thermometers. It is based on the thermoelectric effect occurring when the two junctions of a closed loop made of two different metals are at different temperatures (see thermoelectricitythermoelectricity,
direct conversion of heat into electric energy, or vice versa. The term is generally restricted to the irreversible conversion of electricity into heat described by the English physicist James P.
..... Click the link for more information.


An instrument that measures temperature. Although this broad definition includes all temperature-measuring devices, they are not all called thermometers. Other names have been generally adopted. For a discussion of two such devices See Pyrometer, Thermocouple. See also T emperature measurement

Liquid-in-glass thermometer

This thermometer consists of a liquid-filled glass bulb and a connecting partially filled capillary tube. When the temperature of the thermometer increases, the differential expansion between the glass and the liquid causes the liquid to rise in the capillary. A variety of liquids, such as mercury, alcohol, toluene, and pentane, and a number of different glasses are used in thermometer construction, so that various designs cover diverse ranges between about -300°F and +1200°F (-184°C and +649°C).

Bimetallic thermometer

In this thermometer the differential expansion of thin dissimilar metals, bonded together into a narrow strip and coiled into the shape of a helix or spiral, is used to actuate a pointer. In some designs the pointer is replaced with low-voltage contacts to control, through relays, operations which depend upon temperature, such as furnace controls.

Filled-system thermometer

This type of thermometer has a bourdon tube connected by a capillary tube to a hollow bulb. When the system is designed for and filled with a gas (usually nitrogen or helium) the pressure in the system substantially follows the gas law, and a temperature indication is obtained from the bourdon tube. The temperature-pressure-motion relationship is nearly linear. Atmospheric pressure effects are minimized by filling the system to a high pressure. When the system is designed for and filled with a liquid, the volume change of the liquid actuates the bourdon tube.

Vapor-pressure thermal system

This filled-system thermometer utilizes the vapor pressure of certain stable liquids to measure temperature. The useful portion of any liquid-vapor pressure curve is between approximately 15 psia (100 kilopascals absolute) and the critical pressure, that is, the vapor pressure at the critical temperature, which is the highest temperature for a particular liquid-vapor system. A nonlinear relationship exists between the temperature and the vapor pressure, so the motion of the bourdon tube is greater at the upper end of the vapor-pressure curve. Therefore, these thermal systems are normally used near the upper end of their range, and an accuracy of 1% or better can be expected.

Resistance thermometer

In this type of thermometer the change in resistance of conductors or semiconductors with temperature change is used to measure temperature. Usually, the temperature-sensitive resistance element is incorporated in a bridge network which has a reasonably constant power supply. Although a deflection circuit is occasionally used, almost all instruments of this class use a null-balance system, in which the resistance change is balanced and measured by adjusting at least one other resistance in the bridge. Metals commonly used as the sensitive element in resistance thermometers are platinum, nickel, and copper.


This device is made of a solid semiconductor with a high temperature coefficient of resistance. The thermistor has a high resistance, in comparison with metallic resistors, and is used as one element in a resistance bridge. Since thermistors are more sensitive to temperature changes than metallic resistors, accurate readings of small changes are possible. See Thermistor



a device for measuring temperature through contact with the medium being studied. The uses of thermometers are extremely varied. There are household thermometers (room thermometers, thermometers for air and water, and clinical thermometers), industrial thermometers, and precision thermometers for experimental and meteorological work. The operation of thermometers is based on such physical properties as the thermal expansion of liquids, gases, and solids and on the temperature dependence of electrical resistance, thermal electromotive force, the magnetic susceptibility of a paramagnet, and the pressure of gases or saturated vapor.

The most common types of thermometers are liquid-filled, filled-system, resistance, and thermoelectric thermometers (see). In addition, condensation, gas, acoustic, and magnetic thermometers are used to measure low temperatures. There are also thermometers for special purposes—for example, meteorological thermometers, hypsometers, and deep-sea thermometers.

Bimetallic thermometers are sometimes used. Their operation is based on the difference in thermal expansion of the substances comprising the strips of their sensitive elements. There are also quartz thermometers, using the temperature dependence of the resonance frequency of a piezoelectric quartz crystal, and capacitance thermometers, using the dependence of the dielectric constant of ferroelectrics on temperature.



An instrument that measures temperature.


A device for measuring temperature.