biotechnology

(redirected from biotechnical)
Also found in: Dictionary, Thesaurus, Medical, Financial, Wikipedia.
Related to biotechnical: biotechnology, biotechnical engineering

biotechnology,

the use of biological processes, as through the exploitation and manipulation of living organisms or biological systems, in the development or manufacture of a product or in the technological solution to a problem. As such, biotechnology is a general category that has applications in pharmacology, medicine, agriculture, and many other fields.

The techniques of genetic engineeringgenetic engineering,
the use of various methods to manipulate the DNA (genetic material) of cells to change hereditary traits or produce biological products. The techniques include the use of hybridomas (hybrids of rapidly multiplying cancer cells and of cells that make a
..... Click the link for more information.
 have been used to manipulate the DNA (genetic material; see nucleic acidnucleic acid,
any of a group of organic substances found in the chromosomes of living cells and viruses that play a central role in the storage and replication of hereditary information and in the expression of this information through protein synthesis.
..... Click the link for more information.
) of bacteria and other organisms to manufacture biological products such as drugs (insulin, interferon, and growth hormones). A common technique involved in this process in gene splicing, in which a gene that produces a desired product can be inserted into bacterial DNA. Bacteria can then be grown in large quantities and processed to extract the desired substance; specially cultured plant and animal cells can be similarly grown and processed. Hybrids of cancer and antibody-producing cells (hybridomas) have been cloned in the laboratory to mass produce experimental monoclonal antibodiesmonoclonal antibody,
an antibody that is mass produced in the laboratory from a single clone and that recognizes only one antigen. Monoclonal antibodies are typically made by fusing a normally short-lived, antibody-producing B cell (see immunity) to a fast-growing cell, such as
..... Click the link for more information.
, which are being studied for the treatment of cancer and other diseases. Bacteria have also been altered to break down oil slicks and industrial waste products.

Plants and foods with such desired qualities as prolonged shelf life or increased resistance to diseases and pests have been created through genetic engineering; that is, by inserting DNA from other organisms. Much of the corn and soybeans grown in the United States, for example, are now genetically modified in some way, Livestock have also been genetically altered to produce medically useful substances (see pharmingpharming
, the use of genetically altered livestock, such as cows, goats, pigs, and chickens, to produce medically useful products. In pharming, researchers first create hybrid genes using animal DNA and the human or other gene that makes a desired substance, such as a hormone.
..... Click the link for more information.
). The field of biotechnology also includes gene therapygene therapy,
the use of genes and the techniques of genetic engineering in the treatment of a genetic disorder or chronic disease. There are many techniques of gene therapy, all of them still in experimental stages.
..... Click the link for more information.
, in which attempts are made to insert normal or genetically altered genes into cells to treat genetic disorders and chronic diseases.

Bibliography

See R. W. Old and S. B. Primrose, Principles of Gene Manipulation (5th ed. 1994); J. E. Smith, Biotechnology (3d ed. 1996).

Biotechnology

Generally, any technique that is used to make or modify the products of living organisms in order to improve plants or animals, or to develop useful microorganisms. In modern terms, biotechnology has come to mean the use of cell and tissue culture, cell fusion, molecular biology, and in particular, recombinant deoxyribonucleic acid (DNA) technology to generate unique organisms with new traits or organisms that have the potential to produce specific products. Some examples of products in a number of important disciplines are described below.

Recombinant DNA technology has opened new horizons in the study of gene function and the regulation of gene action. In particular, the ability to insert genes and their controlling nucleic acid sequences into new recipient organisms allows for the manipulation of these genes in order to examine their activity in unique environments, away from the constraints posed in their normal host. Genetic transformation normally is achieved easily with microorganisms; new genetic material may be inserted into them, either into their chromosomes or into extrachromosomal elements, the plasmids. Thus, bacteria and yeast can be created to metabolize specific products or to produce new products. See Gene, Gene action, Plasmid

Genetic engineering has allowed for significant advances in the understanding of the structure and mode of action of antibody molecules. Practical use of immunological techniques is pervasive in biotechnology. See Antibody

Few commercial products have been marketed for use in plant agriculture, but many have been tested. Interest has centered on producing plants that are resistant to specific herbicides. This resistance would allow crops to be sprayed with the particular herbicide, and only the weeds would be killed, not the genetically engineered crop species. Resistances to plant virus diseases have been induced in a number of crop species by transforming plants with portions of the viral genome, in particular the virus's coat protein.

Biotechnology also holds great promise in the production of vaccines for use in maintaining the health of animals. Interferons are also being tested for their use in the management of specific diseases.

Animals may be transformed to carry genes from other species including humans and are being used to produce valuable drugs. For example, goats are being used to produce tissue plasminogen activator, which has been effective in dissolving blood clots.

Plant scientists have been amazed at the ease with which plants can be transformed to enable them to express foreign genes. This field has developed very rapidly since the first transformation of a plant was reported in 1982, and a number of transformation procedures are available.

Genetic engineering has enabled the large-scale production of proteins which have great potential for treatment of heart attacks. Many human gene products, produced with genetic engineering technology, are being investigated for their potential use as commercial drugs. Recombinant technology has been employed to produce vaccines from subunits of viruses, so that the use of either live or inactivated viruses as immunizing agents is avoided. Cloned genes and specific, defined nucleic acid sequences can be used as a means of diagnosing infectious diseases or in identifying individuals with the potential for genetic disease. The specific nucleic acids used as probes are normally tagged with radioisotopes, and the DNAs of candidate individuals are tested by hybridization to the labeled probe. The technique has been used to detect latent viruses such as herpes, bacteria, mycoplasmas, and plasmodia, and to identify Huntington's disease, cystic fibrosis, and Duchenne muscular dystrophy. It is now also possible to put foreign genes into cells and to target them to specific regions of the recipient genome. This presents the possibility of developing specific therapies for hereditary diseases, exemplified by sickle-cell anemia.

Modified microorganisms are being developed with abilities to degrade hazardous wastes. Genes have been identified that are involved in the pathway known to degrade polychlorinated biphenyls, and some have been cloned and inserted into selected bacteria to degrade this compound in contaminated soil and water. Other organisms are being sought to degrade phenols, petroleum products, and other chlorinated compounds. See Genetic engineering, Molecular biology

biotechnology

[¦bī·ō·tek′näl·ə·jē]
(genetics)
The use of advanced genetic techniques to construct novel microbial, plant, and animal strains or obtain site-directed mutants to improve the quantity or quality of products or obtain other desired phenotypes.

Biotechnology

Generally, any technique that is used to make or modify the products of living organisms in order to improve plants or animals, or to develop useful microorganisms. In modern terms, biotechnology has come to mean the use of cell and tissue culture, cell fusion, molecular biology, and in particular, recombinant deoxyribonucleic acid (DNA) technology to generate unique organisms with new traits or organisms that have the potential to produce specific products. Some examples of products in a number of important disciplines are described below.

Recombinant DNA technology has opened new horizons in the study of gene function and the regulation of gene action. In particular, the ability to insert genes and their controlling nucleic acid sequences into new recipient organisms allows for the manipulation of these genes in order to examine their activity in unique environments, away from the constraints posed in their normal host. Genetic transformation normally is achieved easily with microorganisms; new genetic material may be inserted into them, either into their chromosomes or into extrachromosomal elements, the plasmids. Thus, bacteria and yeast can be created to metabolize specific products or to produce new products.

Genetic engineering has allowed for significant advances in the understanding of the structure and mode of action of antibody molecules. Practical use of immunological techniques is pervasive in biotechnology.

Few commercial products have been marketed for use in plant agriculture, but many have been tested. Interest has centered on producing plants that are resistant to specific herbicides. This resistance would allow crops to be sprayed with the particular herbicide, and only the weeds would be killed, not the genetically engineered crop species. Resistances to plant virus diseases have been induced in a number of crop species by transforming plants with portions of the viral genome, in particular the virus's coat protein.

Biotechnology also holds great promise in the production of vaccines for use in maintaining the health of animals. Interferons are also being tested for their use in the management of specific diseases.

Animals may be transformed to carry genes from other species including humans and are being used to produce valuable drugs. For example, goats are being used to produce tissue plasminogen activator, which has been effective in dissolving blood clots.

Plant scientists have been amazed at the ease with which plants can be transformed to enable them to express foreign genes. This field has developed very rapidly since the first transformation of a plant was reported in 1982, and a number of transformation procedures are available.

Genetic engineering has enabled the large-scale production of proteins which have great potential for treatment of heart attacks. Many human gene products, produced with genetic engineering technology, are being investigated for their potential use as commercial drugs. Recombinant technology has been employed to produce vaccines from subunits of viruses, so that the use of either live or inactivated viruses as immunizing agents is avoided. Cloned genes and specific, defined nucleic acid sequences can be used as a means of diagnosing infectious diseases or in identifying individuals with the potential for genetic disease. The specific nucleic acids used as probes are normally tagged with radioisotopes, and the DNAs of candidate individuals are tested by hybridization to the labeled probe. The technique has been used to detect latent viruses such as herpes, bacteria, mycoplasmas, and plasmodia, and to identify Huntington's disease, cystic fibrosis, and Duchenne muscular dystrophy. It is now also possible to put foreign genes into cells and to target them to specific regions of the recipient genome. This presents the possibility of developing specific therapies for hereditary diseases, exemplified by sickle-cell anemia.

Modified microorganisms are being developed with abilities to degrade hazardous wastes. Genes have been identified that are involved in the pathway known to degrade polychlorinated biphenyls, and some have been cloned and inserted into selected bacteria to degrade this compound in contaminated soil and water. Other organisms are being sought to degrade phenols, petroleum products, and other chlorinated compounds. See Genetic engineering

biotechnology

1. (in industry) the technique of using microorganisms, such as bacteria, to perform chemical processing, such as waste recycling, or to produce other materials, such as beer and wine, cheese, antibiotics, and (using genetic engineering) hormones, vaccines, etc
2. another name for ergonomics
www.cato.com/biotech
www.academicinfo.net/biotechmeta.html
www.bio.com

biotechnology

The application of technology to living organisms. Biotechnology dates back centuries to plant and animal breeding, which creates a new generation with different characteristics. However, today, the term has become synonymous with high-tech research and development in the medical field. It appears that the greatest biotech discoveries are just beginning to emerge. Analyzing genome patterns are already allowing custom-tailored approaches for the individual patient, and the potential for diseases to be eradicated even before birth is looming on the horizon. By 2050, scientists expect that biotechnology will have rendered many of today's medical procedures obsolete. See bioinformatics, biosensor and Human Genome Project.
References in periodicals archive ?
Employment gains in the biomedical and biotechnical industry in the Detroit region is impressive, given the fact that total employment in the Detroit region declined by over eight percent between 2002 and 2008.
In 1999 most UK supermarkets and food producers removed GM ingredients from all their products and in 2000 negotiations continued in Europe to tighten labelling rules - a move hotly opposed by the biotechnical companies.
Use of intensive biotechnical moose management measures such as ashtree cutting, feeding of wood waste, and rock salt, combined with large scale protective measures have also favored this population increase.
will be responsible for managing client relationships in the pharmaceutical, biotechnical and emerging technology markets.
Proponents raved about the value of the proposed projects - such as a biotechnical complex that includes MiniMed, a facility primarily focused on treating diabetes.
The book contains a large amount of information and, therefore, it is useful to list the chapter titles which are as follows: Predicting acceptability from flavour data; Sensory analysis of flavours; Food acceptability; Psychology and psychophysiological measurements of flavour; Matching sensory and instrumental analyses; Product optimization; Software for data collection and processing; Citrus breeding and flavour; Cereal flavour; Meat flavour; Consumer perceptions of natural foods; Biotechnical production of flavours; Natural flavours for alcoholic beverages; Beer flavour; Wine flavour; Flavour of distilled beverages; Cocoa flavour; Cheese flavour; and Savoury flavours.
In the first steps toward populating a biotechnical barnyard, research teams in the United States and Scotland report that genetically engineered goats and sheep can secrete medically useful quantities of drugs in their milk.
We believe this collaboration effort is a great opportunity to leverage our own internal biotechnical research with the unique and impressive capabilities that LanzaTech has developed.
Contract notice: Supply of energy-efficient computer equipment for the needs of ul biotechnical faculty for a period of 2 years.
The 100 fastest growing companies in Utah are selected annually from thousands of eligible applicants throughout the state and represent a cross-section from all industries including those in information technology, biomedical, biotechnical, healthcare, retail, construction, and financial services.
1 percent in the field of technical and technological sciences, while the rest were in the fields of humanities, natural sciences and mathematics, biotechnical and medical sciences
A study of the affect of alliances on the rapid growth of biotechnical companies between 1996 and 2001 is also included.