lead

(redirected from bipolar lead)
Also found in: Dictionary, Thesaurus, Medical, Legal, Financial, Wikipedia.
Related to bipolar lead: unipolar lead, V leads

lead,

metallic chemical element; symbol Pb [Lat. plumbum]; at. no. 82; at. wt. 207.2; m.p. 327.502°C;; b.p. about 1,740°C;; sp. gr. 11.35 at 20°C;; valence +2 or +4. One of the oldest metals used by humanity, lead was known to the ancient Egyptians and Babylonians. The Romans used it for pipes and in solder. It was one of the first metals mined in North America, where it was sought after especially for making shot.

Properties and Isotopes

Lead is a dense, relatively soft, malleable metal with low tensile strength. It is a poor conductor of electricity and heat. Lead has a face-centered cubic crystalline structure. It is below tin in Group 14 of the periodic tableperiodic table,
chart of the elements arranged according to the periodic law discovered by Dmitri I. Mendeleev and revised by Henry G. J. Moseley. In the periodic table the elements are arranged in columns and rows according to increasing atomic number (see the table entitled
..... Click the link for more information.
. Although lead has a lustrous silver-blue appearance when freshly cut, it darkens upon exposure to moist air because of the rapid formation of an oxide film; the film protects the metal from further oxidation or corrosion. All lead compounds are poisonous (see lead poisoninglead poisoning
or plumbism
, intoxication of the system by organic compounds containing lead. These enter the body by respiration (of dust, fumes, or sprays) or by ingestion of food or other substances that contain lead.
..... Click the link for more information.
). Lead resists reaction with cold concentrated sulfuric acid but reacts slowly with hydrochloric acid and readily with nitric acid.

The element has four naturally occurring stable isotopes, three of which result from the decay of naturally occurring radioactive elements (thoriumthorium
[from Thor], radioactive chemical element; symbol Th; at. no. 90; mass number of most stable isotope 232; m.p. about 1,750°C;; b.p. about 4,790°C;; sp. gr. 11.7 at 20°C;; valence +4.

Thorium is a soft, ductile, lustrous, silver-white, radioactive metal.
..... Click the link for more information.
 and uraniumuranium
, radioactive metallic chemical element; symbol U; at. no. 92; mass number of most stable isotope 238; m.p. 1,132°C;; b.p. 3,818°C;; sp. gr. 19.1 at 25°C;; valence +3, +4, +5, or +6.
..... Click the link for more information.
). Since this decay takes place at a constant rate, it is possible to predict either the maximum age of a lead-containing rock or its composition at some earlier date, as long as the rock has not been chemically altered. There are 25 known radioactive isotopes of lead, some of which occur naturally in small amounts.

Natural Occurrence and Processing

Although lead is seldom found uncombined in nature, its compounds are widely distributed throughout the world, principally in the ores galenagalena
or lead glance,
lustrous, blue-gray mineral crystallizing usually in cubes, sometimes in octahedrons. It is the most important ore and the principal source of lead.
..... Click the link for more information.
, cerussitecerussite
, colorless to white or gray mineral, sometimes yellowish or greenish, transparent to opaque, very brittle, crystallizing in the orthorhombic system and occurring also in granular and massive form.
..... Click the link for more information.
, and anglesiteanglesite
, pale green, blue, yellow-to-white, or colorless mineral, a sulfate of lead, PbSO4, that is formed by oxidation of galena, crystallizing in the orthorhombic system and occurring also in granular or massive form.
..... Click the link for more information.
. Australia, the United States, Canada, and Russia are among the chief producers of lead. In the United States galena (a lead sulfide ore) is mined in southern Missouri, with some ore coming from the western states. The ore is concentrated by the flotation processflotation process,
in mineral treatment and mining, process for concentrating the metal-bearing mineral in an ore. Crude ore is ground to a fine powder and mixed with water, frothing reagents, and collecting reagents.
..... Click the link for more information.
 and is then refined by electrolysis or by smelting. About one third of the lead used in the United States is so-called secondary lead, i.e., lead and lead alloys reclaimed chiefly from automobile batteries.

Uses

The single most important commercial use of lead is in the manufacture of lead-acid storage batteries (see battery, electricbattery, electric,
device that converts chemical energy into electrical energy, consisting of a group of electric cells that are connected to act as a source of direct current.
..... Click the link for more information.
). It is also used in alloys such as fusible metals, antifriction metals, soldersolder
, metal alloy used in the molten state as a metallic binder. The type of solder to be used is determined by the metals to be united. Soft solders are commonly composed of lead and tin and have low melting points. Hard solders (i.e.
..... Click the link for more information.
, and type metaltype metal,
alloy of lead with antimony, tin, and sometimes copper, so named because of its one time extensive use for making printing type. Expanding upon solidification, the alloy takes a fine and clear impression of the mold in which it hardens. It has a low melting point.
..... Click the link for more information.
. Shot lead is an alloy of lead, antimony, and arsenic. Lead foil is made with lead alloys. Lead is used for covering cables and as a lining for laboratory sinks, tanks, and the "chambers" in the lead-chamber process for the manufacture of sulfuric acid. It is used extensively in plumbingplumbing,
piping systems inside buildings for water supply and sewage. The Romans had a highly developed plumbing system; water was brought to Rome by aqueducts and distributed to homes in lead pipes—hence the name plumbing from the Latin word plumbum for lead.
..... Click the link for more information.
. Because it has excellent vibration-dampening characteristics, lead is often used to support heavy machinery and was used in the foundations of the Pan Am Building built over Grand Central Station in New York City. Lead is also employed as protective shielding against X rays and radiation from nuclear reactors.

Lead has many commonly used compounds. Commercially important are the lead oxides, which have many uses. Litharge is lead monoxide, PbO; red leadred lead,
bright red to orange-red powder, also called minium, that is used in the manufacture of storage batteries, lead glass, and red pigments; a paint made with red lead is commonly used to protect iron and steel from rusting.
..... Click the link for more information.
 is lead tetroxide, Pb3O4; lead peroxide or dioxide, PbO2, is used in matches, as a mordant in dyeing, and as an oxidizing agent. White leadwhite lead,
heavy, white substance, poisonous, insoluble in water, extensively used as a white pigment and base in paints. It is one of the oldest paint pigments used by humans. Chemically, it is basic lead carbonate, a mixture of lead carbonate and lead hydroxide.
..... Click the link for more information.
, 2PbCO3·Pb(OH)2 (basic lead carbonate), is an important pigment used in paints, putty, and ceramics. Chrome yellow, PbCrO4, is a bright yellow pigment. "Sublimed white lead," PbSO4·Pb(OH)2 (basic lead sulfate), is also used as a pigment. Lead acetatelead acetate,
chemical compound, a white crystalline substance with a sweetish taste. Like other lead compounds, it is very poisonous. Lead acetate is soluble in water and glycerin.
..... Click the link for more information.
 (sugar of lead) is used as a mordant, and lead azide, Pb(N3)2, is employed as a detonator for explosives. Lead arsenate is used as an insecticide. Tetraethyl lead, used as a antiknock compound in gasoline, is now banned for environmental reasons in the United States and other countries.

Although lead and most of its compounds are only slightly soluble in water, the use of lead pipe to carry drinking water is dangerous, since lead is a cumulative poison that is not excreted from the body (see lead poisoninglead poisoning
or plumbism
, intoxication of the system by organic compounds containing lead. These enter the body by respiration (of dust, fumes, or sprays) or by ingestion of food or other substances that contain lead.
..... Click the link for more information.
). The "lead" of lead pencils does not contain lead; it is a mixture of graphite and clay.


Lead

(lēd), city (1990 pop. 3,632), Lawrence co., W S.Dak., in the Black Hills; laid out 1876 after the discovery of gold there, inc. 1890. It is the site of the famous Homestake Mine, which was in operation from 1877 to 2001.

Lead

1. Toxic heavy metal often found in paints made or applied before 1978. When renovating, proper lead-abatement procedures are required to avoid lead poisoning.
2. A soft, malleable, heavy metal that has a low melting point and a high coefficient of thermal expansion; very easy to cut and work. See also: Metal

Lead

 

sounding lead; lead line; a navigation device used to measure water depth from shipboard.

There are three types of leads: manual, mechanical, and hydroacoustic (sonic depth finder). The manual device consists of a lead or cast-iron conical or pyramidal weight (3.5-5 kg) attached to a line that is divided into meters or feet by marks of various kinds and colors. With a manual lead, it is possible to measure depths to 50 m at speeds no faster than 3-5 knots (5-9 km/hr). The operational principle of the mechanical lead is the measurement of the hydrostatic pressure in a tube that is sealed off at the upper end, open at the lower, and immersed in the water. The mechanical lead measures depths from 10 to 200 m at speeds of less than 16 knots (28 km/hr). The mechanical devices used on oceanographic vessels for the measurement of very great depths are called bathymeters (fathometers, depthometers).


Lead

 

Pb, a chemical element in group IV of Mendeleev’s periodic system. Atomic number, 82; atomic mass, 207.2. A heavy, bluish gray metal, lead is very ductile and soft; it can be cut with a knife and scratched with a fingernail. Natural lead is composed of five stable isotopes, with mass numbers 202 (trace), 204 (1.5 percent), 206 (23.6 percent), 207 (22.6 percent), and 208 (52.3 percent). The last three isotopes are the final products in the radioactive transformations of 238U, 235U, and 232Th. A large number of lead radioisotopes are formed in nuclear reactions.

Historical survey. Lead was known to the civilizations of Mesopotamia, Egypt, and other ancient countries around 6000–7000 B.C. It was used to make statues, household articles, and writing tablets. The Romans were known to have used lead for water pipes. Alchemists called lead Saturn and used the symbol for the planet to designate Pb. Lead compounds, such as lead ash (PbO) and white lead [2PbC03. Pb(OH)2], were used in ancient Greece and Rome as constituents of medicines and dyes. With the invention of firearms, lead was used in making bullets. The toxicity of lead was noted as early as the first century A.D. by the Greek physician Dioscorides and by Pliny the Elder.

Distribution in nature. The content of lead in the earth’s crust (clarke) is equal to 1.6 × 10-3 percent by weight. The formation of approximately 80 lead-containing minerals, the principal one being galena (PbS), in the earth’s crust is associated, for the most part, with the formation of hydrothermal deposits. A large number (approximately 90) of secondary minerals are formed in the oxidation zones of complex-metal ores. These minerals include sulfates (anglesite, PbSO4), carbonates (cerussite, PbCO3), and phosphates [pyromorphite, Pb5(PO4)3Cl].

Lead is for the most part dispersed in the biosphere; the concentration is low in living matter (5 × 10-5 percent) and in sea-water (3 × 10-9 percent). Lead is partially sorbed from natural waters by clay and is precipitated by hydrogen sulfide; hence lead is accumulated in sea silts mixed with hydrogen sulfide and in the dark-colored clays and schists formed from silt.

Physical and chemical properties. Lead crystallizes in a face-centered cubic lattice (a = 4.9389 angstroms [Å]) and has no allotropic forms. It has an atomic radius of 1.75 A and ionic radii of 1.26 A for Pb2+ and 0.76 Å for Pb4+. Lead has a density of 11.34 g/cm3 at 20°C, a melting point of 327.4°C, a boiling point of 1725°C, and a specific heat capacity at 20°C of 0.128 kilojoule/kg°K (0.0306 calorie/g°C). Its thermal conductivity is 33.5 watts/m°K (0.08 calorie/cm.sec.°C), thermal expansion coefficient is 29.1 × 10-6 at room temperature, and Brinell hardness is 25–40 meganewtons/m2(2.5–4 kilograms force/mm2). Lead has a tensile strength of 12–13 meganewtons/m2, a compressive strength of approximately 50 meganewtons/m2, and the specific ultimate elongation of 50–70 percent. Cold working does not increase the mechanical properties of lead because the recrystallization temperature lies below room temperature (approximately - 35°C at deformations of 40 percent and higher). Lead is diamagnetic, with a magnetic susceptibility of -0.12 × 10-6; at 7.18°K, lead becomes a superconductor.

The electronic configuration of the outer subshells in a Pb atom is 6s2 6p2, in accordance with which the atom exhibits oxidation states of +2 and +4. Lead displays relatively little chemical activity. The metallic luster of freshly cut lead gradually disappears upon exposure to air because of the formation of a very thin PbO film, which shields the metal from further oxidation. Lead combines with oxygen to yield the oxides Pb2O, PbO, PbO2, Pb3O4, and Pb2O3.

In the absence of O2, water does not react with lead at room temperature, but Pb decomposes hot water vapor to yield lead oxide and hydrogen. The hydroxides corresponding to the oxides PbO and PbO2, namely Pb(OH)2 and Pb(OH)4, are amphoteric in nature.

The compound PbH4, combining lead and hydrogen, is obtained in small quantities upon the action of dilute hydrochloric acid on Mg2Pb. PbH4, a colorless gas, readily decomposes to yield Pb and H2. Lead combines with halogens upon heating to form the halides PbX2 (X is a halogen), which are all sparingly soluble in water. Halides with the formula PbX4 are also obtained; these include lead tetrafluoride (PbF4), in colorless crystals, and lead tetrachloride (PbCl4), an oily yellow liquid. Both compounds decompose readily to yield F2 or Cl2, and both are hydrolyzed by water. Lead does not react with nitrogen. Lead azide [Pb(N3)2] is obtained upon the interaction of solutions of sodium azide (NaN3) and Pb(II) salts; Pb(N3)2 occurs as colorless, acicular crystals, sparingly soluble in water and decomposing upon impact or heating to yield Pb and N2 with an explosion. Sulfur reacts with lead upon heating to form lead sulfide (PbS)—an amorphous black powder. Lead sulfide may also be obtained by passing hydrogen sulfide into solutions of Pb(II) salts. PbS occurs naturally as lead glance, or galena.

In the electromotive force series, Pb ranks higher than hydrogen (normal electrode potentials of –0.126 volt [V] for Pb ⇆ Pb2+ + 2 e and +0.65 V for Pb ⇆ Pb4+ + 4e). However, lead does not displace hydrogen from dilute hydrochloric and sulfuric acids because of the H2 overvoltage on Pb and the formation of protective films, composed of the poorly soluble chloride PbCl2 and sulfate PbSO4, on the metal surface. Concentrated H2SO4 and HCL react with Pb upon heating to produce soluble complex compounds with the compositions Pb(HSO4)2 and H2[PbCl4]. Nitric, acetic, and certain organic acids (for example, citric) dissolve lead with the formation of Pb(II) salts. Lead salts are classified according to water solubility as soluble (acetate, nitrate, and chlorate), sparingly soluble (chloride and fluoride), and insoluble (sulfate, carbonate, chromate, phosphate, molybdate, and sulfide). Pb(IV) salts may be obtained by the electrolysis of solutions of Pb(II) salts strongly acidified with H2SO4. The most important Pb(IV) salts are the sulfate Pb(SO4)2 and the acetate Pb(C2H3O2)4. Pb(IV) salts tend to combine with excess negative ions to form complex anions, for example, plumbates (PbO3)2- and (PbO4)4-, chloroplumbates (PbCl6)2-, and hydroxyplumbates [Pb(OH)6]2-. Concentrated caustic alkali solutions react with Pb upon heating to yield hydrogen and hydroxyplumbites of the type X2[Pb(OH)4].

Production. Metallic lead is obtained by the oxidative roasting of PbS with subsequent reduction of PbO to crude Pb (lead bullion), which is then refined (purified). Oxidative roasting of the concentrate is carried out in continuous traveling-grate sinter machines. The following reaction predominates during the roasting of PbS:

2PbS + 3O2 = 2PbO + 2SO2

In addition, a small quantity of the sulfate PbSO4 is obtained, which is converted into the silicate PbSiO3 with the addition of silica sand to the charge. The sulfides of other metals (Cu, Zn, Fe), present as admixtures, are also oxidized at the same time.

Instead of yielding a powdery sulfide mixture, the roasting process gives an agglomerate—a porous, sintered, solid mass composed chiefly of the oxides PbO, CuO, ZnO, and Fe2O3. Pieces of the agglomerate are mixed with coke and limestone and the entire mixture is then placed in a water-jacketed furnace; air is fed under pressure from below into the furnace by means of tubes (tuyeres). The coke and carbon monoxide reduce the PbO to Pb at rather low temperatures (below 500°C). At higher temperatures, the following reactions occur:

CaCO3 = CaO + CO2

2PbSiO3 + 2CaO + C = 2Pb + 2CaSiO3 + CO2

The Zn and Fe oxides are partially converted into ZnSiO3 and FeSiO3, which together with CaSiO3 form a slag, which floats to the surface. Lead oxides are reduced to metal. Crude lead contains 92–98 percent Pb, the remainder being admixtures of Cu, Ag (sometimes Au), Zn, Sn, As, Sb, Bi, and Fe. Admixtures of Cu and Fe are removed by liquidation. Air is passed through the molten metal in order to remove Sn, As, and Sb. The extraction of Ag (and Au) involves the addition of Zn, which forms a crust made from compounds of Zn and Ag (and Au), which are lighter than Pb and fuse at 600°-700°C. The Zn excess is removed from the molten Pb by the passage of air, water vapor, or chlorine. Ca or Mg, which are added to molten Pb in order to remove Bi, form relatively infusible Ca3Bi2 and Mg3Bi2. Thus, the refined lead contains 99.8–99.9 percent Pb. Further purification is effected by electrolysis, which yields a purity of no less than 99.99 percent.

Uses. Lead is widely used in the manufacture of lead-acid storage batteries and in the design of plant equipment that must be resistant to aggressive gases and liquids. Lead exhibits very strong absorption of both gamma and X rays, as a result of which it is used as a shielding material in, for example, containers for the storage of radioactive substances and X-ray laboratory equipment. Large amounts of lead are used in the manufacture of sheaths for electric cables, which protect the cables from corrosion and mechanical damage. Many alloys are prepared on a lead base. The oxide PbO is added to crystal and optical glass to obtain materials with a high refractive index. Minium, chromate (chrome yellows), and basic lead carbonate (white lead) are pigments with limited use. Lead chromate is an oxidizing agent used in analytical chemistry. Azide and styph-nate (trinitrorescorcinate) are explosive primers. Tetraethyl-lead prevents knocking in internal combustion engines. Lead acetate serves as an analytical reagent for detecting H2S. The isotopes 204Pb (stable) and 2l2Pb (radioactive) are used as iso-topic tracers.

S. A. POGODIN

In the organism. Plants absorb lead from the soil, water, and atmospheric precipitation. Lead enters the human body in food (approximately 0.22 mg), water (0.1 mg), and dust (0.08 mg). The permissible daily Pb intake level for humans is 0.2–2 mg. Lead is excreted primarily in feces (0.22–0.32 mg) and, to a lesser extent, in urine (0.03–0.05 mg). The human body contains an average of 2 mg lead; in certain cases this figure reaches 200 mg. Inhabitants of industrially developed countries have a higher lead content than do those of agrarian countries, and urban dwellers have a higher content than do country dwellers. The major lead deposits in the body are found in the skeleton (90 percent of all the lead in the organism); 0.2–1.9 micrograms per gram μg/g) is accumulated in the liver, 0.15–0.40 micrograms per milliliter (μg/ml) in the blood, 24 μg/g in the hair, and 0.005–0.15 μg/ml in mother’s milk. Lead is also present in the pancreas, kidneys, brain, and in other organs. The concentration and distribution of lead in animal organisms are similar to the levels established for humans. An increased lead level in the environment is matched by an increased accumulation in the bones, hair, and liver. The biological functions of lead have not yet been determined.

IU. I. RAETSKAIA

Poisoning. Lead poisoning can occur during ore extraction, lead smelting, and the manufacture of lead paints as well as in printing, cable manufacture, the manufacture of ceramics, and the preparation and use of tetraethyllead. Poisoning in the home, which is rare, results from the ingestion of food that has been stored for a long time in earthenware vessels coated with a glaze containing minium or litharge. Lead and its inorganic compounds, in aerosol form, enter the organism primarily through the respiratory tract and, to a lesser degree, through the gastrointestinal tract and skin. In the blood, lead is circulated in highly dispersed colloid form—phosphate and albuminate. It is generally excreted through the intestine and kidneys. As lead poisoning develops, there is a disruption of porphyrin, protein, carbohydrate, and phosphate metabolism and a deficiency of vitamins C and B1. Functional and organic changes in the central and autonomic nervous systems occur, and there is a toxic effect from lead on the bone marrow. Poisoning may be latent (carriage) and can occur in mild, intermediate, or severe forms.

The most specific symptoms of lead poisoning are a slate blue line at the edge of the gums, a pale earthy tinge to the integument, reticulocytosis and other changes in the blood, increased porphyrin content in urine, and a lead concentration in the urine of 0.04–0.08 mg per liter or more. Damage to the nervous system is manifested by asthenia and, in pronounced forms, encephalopathy and by paralysis (mainly of wrist and finger extensors) and polyneuritis. Lead colic is characterized by sharp stomach cramps and constipation, lasting from a few hours to two to three weeks; often the colic is accompanied by nausea, vomiting, and a rise in arterial pressure and body temperature (up to 37.5°–38°C). Possible effects of chronic poisoning include damage to the liver and cardiovascular system and disruption of endocrine functions, which with women can lead to miscarriage, dysmenorrhea, and menorrhagia. The suppression of immunobiologic reactivity increases the general morbidity rate.

Treatment. Lead poisoning is treated with both specific (com-plexone-forming) and general restorative (glucose, vitamins) agents. Physical therapy and treatment in sanatoriums and health spas (Piatigorsk, Matsesta, Sernovodsk) are also recommended. Preventive measures include the substitution of less toxic substances for lead (zinc and titanium white for white lead) and the automation and mechanization of operations in lead production. There should also be effective exhaust ventilation, protective gear for individual workers, a therapeutic diet, supplementary vitamins, and preliminary and periodic medical examinations.

Lead preparations are used in medicine (only externally) as astringents and antiseptics. Examples are diluted lead subace-tate solution (for inflammation of skin and mucosa) and simple and complex lead plasters (for boils and suppurative inflammations of the skin).

A. A. KASPAROV

REFERENCES

Andreev, V. M. “Svinets.” In Kratkaia khimicheskaia entsiklopediia, vol. 4. Moscow, 1965.
Remy, H. Kurs neorganicheskoi khimii, vol. 1. Moscow, 1963. (Translated from German.)
Chizhikov, D. M. “Metallurgiia svintsa.” In Spravochnik metallurga potsvelnym metallam, vol. 2. Moscow, 1947.
Vrednye veshchestva v promyshlennosti. Edited by N. V. Lazarev, 6th ed., part 2. Leningrad, 1971.
Tarabaeva, G. I. Deistvie svintsa na organizm i lechebno-profilakticheskie meropriiatiia. Alma-Ata, 1961.
Professional’nye boiezni, 3rd ed. Moscow, 1973.

What does it mean when you dream about lead?

Associations with lead revolve around heaviness. Lead in a dream may represent a condition that has weighed so heavily upon the consciousness that it feels like lead. Alternatively, lead is related to sluggishness, as in the expression “get the lead out.”

lead

[led]
(chemistry)
A chemical element, symbol Pb, atomic number 82, atomic weight 207.19.
(design engineering)
The distance that a screw will advance or move into a nut in one complete turn.
(electricity)
A wire used to connect two points in a circuit.
(engineering)
A mass of lead attached to a line, as used for sounding at sea.
(geology)
A small, narrow passage in a cave.
(graphic arts)
A thin strip of metal used during the composition process to space lines of type.
(metallurgy)
A soft, heavy metal with a silvery-bluish color; when freshly cut it is malleable and ductile; occurs naturally, mostly in combination; used principally in alloys in pipes, cable sheaths, type metal, and shields against radioactivity.
(ordnance)
The action of aiming ahead of a moving target with a gun, bomb, rocket, or torpedo so as to hit the target, including whatever action is necessary to correct for deflection.
The distance between the moving target and the point at which the gun or missile is aimed.
The number of diameters for one complete turn of the rifling.
An explosive train component which consists of a column of high explosive, usually small in diameter, used to transmit detonation from one detonating component to a succeeding high explosive component; it is generally used to transmit the detonation from a detonator to a booster charge.
(physics)

lead

1. One of the sections of a masonry wall built up at each corner; supports a line between them which serves as a guide for constructing the remainder of the wall.
2. (pl.) See leads.
3. A soft, malleable, heavy metal; has low melting point and a high coefficient of thermal expansion; very easy to cut and work.

lead

i. The first aircraft in a formation (lead aircraft).
ii. The angular difference between the line of sight and an aiming line. See angle of lead.
iii. The amount one cyclic motion is ahead of another, expressed in degrees. The opposite is lag.

lead

1
1. the act or prerogative of playing the first card in a round of cards or the card so played
2. the principal role in a play, film, etc., or the person playing such a role
3. Music an important entry assigned to one part usually at the beginning of a movement or section
4. a wire, cable, or other conductor for making an electrical connection
5. Boxing
a. one's habitual attacking punch
b. a blow made with this
6. Nautical the direction in which a rope runs
7. a deposit of metal or ore; lode
8. the firing of a gun, missile, etc., ahead of a moving target to correct for the time of flight of the projectile

lead

2
1. a heavy toxic bluish-white metallic element that is highly malleable: occurs principally as galena and used in alloys, accumulators, cable sheaths, paints, and as a radiation shield. Symbol: Pb; atomic no.: 82; atomic wt.: 207.2; valency: 2 or 4; relative density: 11.35; melting pt.: 327.502?C; boiling pt.: 1750?C
2. a lead weight suspended on a line used to take soundings of the depth of water
3. 
a. graphite or a mixture containing graphite, clay, etc., used for drawing
b. a thin stick of this material, esp the core of a pencil

lead

A metal pin that extends out from a chip which plugs into a socket or is soldered onto a circuit board. See pin, socket mount, surface mount and lead frame.
References in periodicals archive ?
is the exclusive Bipolar Lead Monitor and Chronic Lead Impedance Trend
Food and Drug Administration (FDA) approval of the Company's QuickSite(R) 1056T bipolar lead.