conservation laws

Also found in: Dictionary.
Related to conservation laws: conservation of momentum

conservation laws,

in physics, basic laws that together determine which processes can or cannot occur in nature; each law maintains that the total value of the quantity governed by that law, e.g., mass or energy, remains unchanged during physical processes. Conservation laws have the broadest possible application of all laws in physics and are thus considered by many scientists to be the most fundamental laws in nature.

Conservation of Classical Processes

Most conservation laws are exact, or absolute, i.e., they apply to all possible processes; a few conservation laws are only partial, holding for some types of processes but not for others. By the beginning of the 20th cent. physics had established conservation laws governing the following quantities: energy, mass (or matter), linear momentummomentum
, in mechanics, the quantity of motion of a body, specifically the product of the mass of the body and its velocity. Momentum is a vector quantity; i.e., it has both a magnitude and a direction, the direction being the same as that of the velocity vector.
..... Click the link for more information.
, angular momentum, and electric charge. When the theory of relativityrelativity,
physical theory, introduced by Albert Einstein, that discards the concept of absolute motion and instead treats only relative motion between two systems or frames of reference.
..... Click the link for more information.
 showed (1905) that mass was a form of energy, the two laws governing these quantities were combined into a single law conserving the total of mass and energy.

Conservation of Elementary Particle Properties

With the rapid development of the physics of elementary particleselementary particles,
the most basic physical constituents of the universe. Basic Constituents of Matter

Molecules are built up from the atom, which is the basic unit of any chemical element. The atom in turn is made from the proton, neutron, and electron.
..... Click the link for more information.
 during the 1950s, new conservation laws were discovered that have meaning only on this subatomic level. Laws relating to the creation or annihilation of particles belonging to the baryonbaryon
[Gr.,=heavy], class of elementary particles that includes the proton, the neutron, and a large number of unstable, heavier particles, known as hyperons. From a technical point of view, baryons are strongly interacting fermions; i.e.
..... Click the link for more information.
 and leptonlepton
[Gr.,=light (i.e., lightweight)], class of elementary particles that includes the electron and its antiparticle, the muon and its antiparticle, the tau and its antiparticle, and the neutrino and antineutrino associated with each of these particles.
..... Click the link for more information.
 classes of particles have been put forward. According to these conservation laws, particles of a given group cannot be created or destroyed except in pairs, where one of the pair is an ordinary particle and the other is an antiparticleantiparticle,
elementary particle corresponding to an ordinary particle such as the proton, neutron, or electron, but having the opposite electrical charge and magnetic moment.
..... Click the link for more information.
 belonging to the same group. Recent work has raised the possibility that the proton, which is a type of baryon, may in fact be unstable and decay into lighter products; the postulated methods of decay would violate the conservation of baryon number. To date, however, no such decay has been observed, and it has been determined that the proton has a lifetime of at least 1031 years. Two partial conservation laws, governing the quantities known as strangeness and isotopic spin, have been discovered for elementary particles. Strangeness is conserved during the so-called strong interactions and the electromagnetic interactions, but not during the weak interactions associated with particle decay; isotopic spin is conserved only during the strong interactions.

Conservation of Natural Symmetries

One very important discovery has been the link between conservation laws and basic symmetries in nature. For example, empty space possesses the symmetries that it is the same at every location (homogeneity) and in every direction (isotropy); these symmetries in turn lead to the invariance principles that the laws of physics should be the same regardless of changes of position or of orientation in space. The first invariance principle implies the law of conservation of linear momentum, while the second implies conservation of angular momentum. The symmetry known as the homogeneity of time leads to the invariance principle that the laws of physics remain the same at all times, which in turn implies the law of conservation of energy. The symmetries and invariance principles underlying the other conservation laws are more complex, and some are not yet understood.

Three special conservation laws have been defined with respect to symmetries and invariance principles associated with inversion or reversal of space, time, and charge. Space inversion yields a mirror-image world where the "handedness" of particles and processes is reversed; the conserved quantity corresponding to this symmetry is called space parity, or simply parityparity
or space parity,
in physics, quantity that refers to the relationship between an object or process and the image that it can produce in a mirror. For example, any right-handed object will produce a mirror-image counterpart that is identical to it in every way
..... Click the link for more information.
, P. Similarly, the symmetries leading to invariance with respect to time reversal and charge conjugation (changing particles into their antiparticles) result in conservation of time parity, T, and charge parity, C. Although these three conservation laws do not hold individually for all possible processes, the combination of all three is thought to be an absolute conservation law, known as the CPT theorem, according to which if a given process occurs, then a corresponding process must also be possible in which particles are replaced by their antiparticles, the handedness of each particle is reversed, and the process proceeds in the opposite direction in time. Thus, conservation laws provide one of the keys to our understanding of the universe and its material basis.


See R. P. Feynman, The Character of Physical Law (1967); M. Gardner, The Ambidextrous Universe: Left, Right, and the Fall of Parity (rev. ed. 1969); S. Glashow, The Charm of Physics (1991).

Conservation laws (physics)

Principles which state that the total values of specified quantities remain constant in time for an isolated system. Conservation laws occupy enormously important positions both at the foundations of physics and in its applications.

Realization in classical mechanics

There are three great conservation laws of mechanics: the conservation of linear momentum, often referred to simply as the conservation of momentum; the conservation of angular momentum; and the conservation of energy.

The linear momentum, or simply momentum, of a particle is equal to the product of its mass and velocity. It is a vector quantity. The total momentum of a system of particles is simply the sum of the momenta of each particle considered separately. The law of conservation of momentum states that this total momentum does not change in time. See Conservation of momentum, Momentum

The angular momentum of a particle is more complicated. It is defined by the vector product of the position and momentum vectors. The law of conservation of angular momentum states that the total angular momentum of an isolated system is constant in time. See Angular momentum

The conservation of energy is perhaps the most important law of all. Energy is a scalar quantity, and takes two forms: kinetic and potential. The kinetic energy of a particle is defined to be one-half the product of its mass and the square of its velocity. The potential energy is loosely defined as the ability to do work. The total energy is the sum of the kinetic and potential energies, and according to the conservation law it remains constant in time for an isolated system.

The essential difficulty in applying the conservation of energy law can be appreciated by considering the problem of two colliding bodies. In general, the bodies emerge from the collision moving more slowly than when they entered. This phenomenon seems to violate the conservation of energy, until it is recognized that the bodies involved may consist of smaller particles. Their random small-scale motions will require kinetic energy, which robs kinetic energy from the overall coherent large-scale motion of the bodies that are observed directly. One of the greatest achievements of nineteenth-century physics was the recognition that small-scale motion within macroscopic bodies could be identified with the perceived property of heat. See Conservation of energy, Energy, Kinetic theory of matter

Position in modern physics

As physics has evolved, the great conservation laws have likewise evolved in both form and content, but have never ceased to be important guiding principles.

In order to account for the phenomena of electromagnetism, it was necessary to go beyond the notion of point particles, to postulate the existence of continuous electric and magnetic fields filling all space. To obtain valid conservation laws, energy, momentum, and angular momentum must be ascribed to the electromagnetic fields. See Electromagnetic radiation, Maxwell's equations, Poynting's vector

In the special theory of relativity, energy and momentum are not independent concepts. Einstein discovered perhaps the most important consequence of special relativity, that is, the equivalence of mass and energy, as a consequence of the conservation laws. The “law” of conservation of mass is understood as an approximate consequence of the conservation of energy. See Conservation of mass, Relativity

A remarkable, beautiful, and very fruitful connection has been established between symmetries and conservation laws. Thus the law of conservation of linear momentum is understood as a consequence of the homogeneity of space, the conservation of angular momentum as a consequence of the isotropy of space, and the conservation of energy as a consequence of the homogeneity of time. See Symmetry laws (physics)

The development of general relativity, the modern theory of gravitation, necessitates attention to a fundamental question for the conservation laws: The laws refer to an “isolated system,” but it is not clear that any system is truly isolated. This is a particularly acute problem for gravitational forces, which are long range and add up over cosmological distances. It turns out that the symmetry of physical laws is actually a more fundamental property than the conservation laws themselves, for the symmetries remain valid while the conservation laws, strictly speaking, fail.

In quantum theory, the great conservation laws remain valid in a very strong sense. Generally, the formalism of quantum mechanics does not allow prediction of the outcome of individual experiments, but only the relative probability of different possible outcomes. One might therefore entertain the possibility that the conservation laws were valid only on the average. However, momentum, angular momentum, and energy are conserved in every experiment. See Quantum mechanics, Quantum theory of measurement

Conservation laws of particle type

There is another important class of conservation laws, associated not with the motion of particles but with their type. Perhaps the most practically important of these laws is the conservation of chemical elements. From a modern viewpoint, this principle results from the fact that the small amount of energy involved in chemical transformations is inadequate to disrupt the nuclei deep within atoms. It is not an absolute law, because some nuclei decay spontaneously, and at sufficiently high energies it is grossly violated. See Radioactivity

Several conservation laws in particle physics are of the same character: They are useful even though they are not exact because, while known processes violate them, such processes are either unusually slow or require extremely high energy. See Elementary particle

References in periodicals archive ?
Symmetries and conservation laws in particle physics; an introduction to group theory for particle physicists.
The amendment makes it possible for virtually anyone to bring suit in the federal district court for the District of Columbia to cancel state conservation laws in effect in 13 states and threatens state authority in another 20 states.
He looks at early American resistance to destructive industrial development, the class character of late 19th-century conservation laws that dispossessed people of food sources forcing them into wage-labor, the significance of "industrial hygiene" in generating consciousness about industrial hazards beyond the workplace, green jobs of the Civilian Conservation Corps under the New Deal, how organized labor leveraged broader environmental protections in the 1940s and '50s, and how radical labor sought environmental protection through community empowerment by direct action.
They consider computational transport phenomena, the equations of change, physical properties, turbulence modeling concepts, computation coordinates and conservation laws, numerical methods for solving governing equations, the code itself, and multiphase phenomena.
A crash course in numerical methods for conservation laws is appended.
An essential principle of post-introductory physics, Noether's Theorem demonstrates the connection between conservation laws and symmetries.
The book's 12 chapters explore areas such as exotic solutions in general relativity, nonlinear perturbations and conservation laws on curved backgrounds in general relativity, the Euclidean path integral in quantum gravity, and conditions for stimulated emissions in anomalous gravity-superconductor interactions.
The authors explore the need for quantum mechanics and its physical basis to discuss representation theory, equations of motion, bound states of simple systems, symmetries and conservation laws, angular momentum, approximation methods, the three-body problem and quantization of radiation fields.
He covers classical mechanics and string field theory, the geometry of physics (linear, curvilinear and multilinear), the Lagrange-Poincare description of mechanics, Newton/Gauge invariant mechanics, Hamiltonian geometric optics, Hamilton-Jacobi theory, relativistic mechanics, conservation laws and symmetry.
Among the questions are what is Planck's constant and what is its significance, what are some quantum scales of time, why do bosons and fermions have such funny names, what are the big four absolute conservation laws, what is the two-slit experiment and why is it important, how do electrons behave in a metal, what is superconductivity, and what is string theory.
The vehicle, one of two buses visiting schools and cable companies throughout the nation, is scheduled to stop next in Berkeley where C-SPAN reporters will focus on naturalist John Muir, who was the primary force behind the nation's first conservation laws.
Chapters are ordered to progresses from purely geometric and kinematic concepts to physical concepts, looking at convection and diffusion as the simplest models of transport and then covering local conservation laws, free surface waves, and shallow water theory.

Full browser ?