developmental genetics

Also found in: Medical, Wikipedia.

Developmental genetics

The study of how genes control development. Advances in the field have emphasized the degree of conservation of the genes controlling development throughout evolution. Thus, such distant organisms as insects and vertebrates share a number of very homologous genes controlling early development. For example, homeobox genes (Hox genes) are used in both insects and mammals to provide information for anterior-posterior positioning. The conservation of the genes is so great that the human version of a Hox gene can sometimes substitute for the mutant Drosophila gene and correct abnormalities of early development.

Most genes involved in sex determination have not been conserved, but a gene has been cloned in the nematode Caenorhabditis elegans which is highly homologous to a gene involved in the Drosphila sex determination cascade and to a gene in mammals whose role in sex determination has yet to be fully elucidated. Another organism which is elucidating these genes and has become of great interest is the zebrafish. Its small size and clear embryo allow easy screening of many developmental mutations, and many of the above-mentioned evolutionary conservations have been confirmed in the zebrafish.

Determination is a stage during the developmental process when genes become committed to a particular expression pattern leading to a differentiated state. At the time of this stage, the differentiated state is not yet visible. This aspect can be confirmed by transplantation of determined but not yet differentiated tissues to ectopic sites and observing the transplant's development. Advances have shown that some cell types are not as highly determined as was previously thought. Brain cells have given rise to blood cells, and bone marrow cells have given rise to bone and muscle. This apparent lack of determination in cells previously believed to be determined suggests greater potential for plasticity and the possibility of manipulating cells to new fates to create organs for human transplantation, for example.

Another area of research has involved maternal inheritance. Many of the genes responsible for the determination of cell fate in C. elegans larva are laid down in the egg; that is, they are maternal-effect genes. In this case, it is not the genotype of the zygote which influences development but that of the mother. Thus, homozygosity for a recessive mutation in the mother leads to altered development, even though the sperm is from a homozygous wild-type male and the resulting zygote was heterozygous. The percentage of maternal-effect genes is also high in Drosophila. See Gene action

Another general phenomenon under genetic control during development is induction—the action of one cell or tissue on other cells in order to determine altered gene expression in them.

Homoeotic mutations change one paired structure to another of a more interior or posterior compartment (for example, a leg to an antenna). The study of their structure and function has provided a paradigm for the role of genes in conveying positional information during development. In Drosophila, seven homoeotic genes are grouped in two complexes. Their role in establishing segmental identities is well defined, and the DNA sequence of the genes shows a highly conserved element called the homeobox. This conserved sequence is also found in some pair-rule and polarity genes, and the search for genes homologous to these led to the identification of other genes that are highly conserved in animal evolution. Although Drosophila uses one set of homeobox genes (separated into two clusters on two different chromosomes), mammals have amplified the set of genes to a minimum of four clusters of the size of the single cluster in Drosophila. These genes maintain the same patterns of expression in both mammals and Drosophila. They are expressed 5 to 3 in order of transcription, and the 5-to-3 order in the cluster is also reflected in the posterior-to-anterior limits of expression of the gene products. Most mutations in homeobox genes are recessive, and embryonic stem-cell knockouts have disclosed that, because there is sufficient redundancy in the mammalian homeobox clusters, the homozygous absence of one homeobox gene does not always result in an apparent phenotype. Paired box genes are another highly conserved family of genes, first identified for their important developmental roles in Drosophila. Mutations in these genes frequently cause dominantly inherited birth defects in mammals.

Imprinting, a developmentally important phenomenon that was first discovered in insects, is also important for mammalian development and human disease. In imprinting, genes transmitted through the testis sometimes function differently from those transmitted through the ovary. Many portions of the genome have been found to be imprinted, including the reciprocal imprinting of insulinlike growth factor and its receptor. Some major human diseases occur when both a paternal and a maternal copy of a gene are not present. The Prader-Willi syndrome, a disorder of mental retardation, poor appetite regulation, and mild dysmorphic features, is an example. Advances have strongly implicated gametogenesis-specific methylation of key controlling regions in the imprinting process. Such imprints seem to be erased from the migrating germ cells enroute to the developing gonad, and then are established differentially during ovigenesis and spermatogenesis, presumably by proteins uniquely expressed in the two different gonads and with specificity for the particular DNA sequences. The actual expression of imprinting differences frequently involves (1) competition between cis-linked genetic elements and (2) a nontranslated RNA species. See Developmental biology, Genetics

developmental genetics

[də¦vel·əp‚ment·əl jə′ned·iks]
A branch of genetics primarily concerned with the manner in which genes control or regulate development.
References in periodicals archive ?
The text includes an introductory mini-atlas of the rat brain for beginning neuroanatomy students, and has been revised to consider new ideas in developmental genetics, especially those relating to neuromeres.
More generally, the Drosophila model has enabled biologists throughout the world to make considerable progress, not only in developmental genetics and innate immunity but also in the study of certain human pathologies and in the understanding of memory, behavior, sleep and nutrition phenomena.
Professor Robin Lovell-Badge, head of developmental genetics at the MRC National Institute for Medical Research, said: "This interesting work at last brings the topic of therapeutic cloning in humans back into the realm of good science rather than controversy.
To do so, one must incorporate data from morphology, ecology, population biology and developmental genetics and use tools from phylogenetic analysis, coalescent theory, and tests of molecular and morphological adaptation in addition to utilizing data from transgenic, functional genomic and gene expression analyses.
Eckhardt, professor of developmental genetics and evolution at Penn State, Maciej Henneberg, professor of anatomy and pathology at the University of Adelaide, and Kenneth Hsu, a Chinese geologist and paleoclimatologist, suggests that the single specimen on which the new designation depends, known as LB1, does not represent a new species.
Focusing on a new experimental model, the epithelial seam cell number variation, and using comprehensive molecular developmental genetics, genomics and imaging we will derive principles about the contribution of genes to stabilisation of developmental outcomes and will develop a developmental framework for phenotypic buffering.
Here, Dr Lyle Armstrong, from the centre's stem-cell biology and developmental genetics department, explains the research to Health Reporter Jane Picken
The company was formed around the founders' internationally recognised research in plant biochemistry, molecular biology and developmental genetics.
The efforts of environmental medicine in the future will build on recent successes in interventional epidemiology, molecular epidemiology, developmental genetics, and molecular mechanisms of toxicity.
Professor Jill Farrant, Research Chair - Plant Molecular Physiology, Department of Molecular and Cell Biology, University of Cape Town, SOUTH AFRICA; Professor Ingrid Scheffer, Chair of Paediatric Neurology Research, University of Melbourne, AUSTRALIA; Professor Frances Ashcroft, Royal Society Research Professor, Department of Physiology, Anatomy and Genetics, Oxford University, UNITED KINGDOM; Professor Susana Lopez, Developmental Genetics and Molecular Physiology, Department of the Institute of Biotechnology, National University of Mexico, Cuernavaca, MEXICO; Professor Bonnie Bassler, Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, USA
In this paper, a quintet of Russian scientists investigates the developmental genetics of plant-microbial symbiosis from developmental and applied viewpoints.
Examining seminal and current experiments in such fields as comparative embryology (repurposing of conserved primitive structures) and developmental genetics (function, conservation, and evolution of the Hox genes), Shubin leads the reader to understand that the evolution of man is supported by a cacophony of different scientific voices.

Full browser ?