(redirected from differentiable)
Also found in: Dictionary, Thesaurus, Medical, Legal, Financial, Wikipedia.
Related to differentiable: Differentiable function


see calculuscalculus,
branch of mathematics that studies continuously changing quantities. The calculus is characterized by the use of infinite processes, involving passage to a limit—the notion of tending toward, or approaching, an ultimate value.
..... Click the link for more information.



the fundamental concept of the differential calculus. It characterizes the rate of change of a function. The derivative is a function defined, for every x, as the limit of the ratio

if the limit exists. A function whose derivative exists is said to be differentiable.

Every differentiable function is continuous. The opposite assertion, however, is false. There even exist continuous functions that are nowhere differentiable. The derivative of a function of a real variable may be nondifferentiable or even discontinuous. In the complex domain, on the other hand, the existence of the first derivative implies the existence of derivatives of all orders. Derivatives of functions of more than one variable (partial derivatives), the rules for obtaining derivatives, and various applications of derivatives are discussed in the article DIFFERENTIAL CALCULUS.

The theory of functions of a real variable deals, in particular, with the functional properties of the derivative and with various generalizations of the concept of the derivative. For example, a derivative that exists everywhere is a function of class one in the Baire classification. A derivative, even if it is discontinuous, takes on all intermediate values between its maximum and minimum. The most important generalizations of the concept of derivative follow.

Dini derivatives. The superior limit of the ratio

as x1x, x1 > x, is called the right upper derivative of f Δd. The right lower λd and left upper Δs and lower λs derivatives are defined in an analogous manner. If Δd = λds = λs), f(x) has a right (left) derivative at the point x. The ordinary derivative exists if all four Dini derivatives are finite and equal. Dini derivatives were introduced by the Italian mathematician U. Dini in 1878. In 1915, N. N. Luzin proved that if all four Dini derivatives are finite on some set, then, apart from a null set, the function has an ordinary derivative everywhere on the set.

Approximate derivative. The approximate derivative was introduced by A. Ia. Khinchin in 1916. It is the limit of the ratio

as x1, approaches x on the points of a set for which x is a density point.


A substance that is made from another substance.
The slope of a graph y = ƒ(x) at a given point c ; more precisely, it is the limit as h approaches zero of ƒ(c + h) - ƒ(c) divided by h. Also known as differential coefficient; rate of change.


1. Chem a compound that is formed from, or can be regarded as formed from, a structurally related compound
2. Maths
a. the change of a function, f(x), with respect to an infinitesimally small change in the independent variable, x; the limit of [f(a + Δx)--f(a)]/Δx, at x = a, as the increment, Δx, tends to 0. Symbols: df(x)/dx, fʹ(x), Df(x)
b. the rate of change of one quantity with respect to another
3. Psychoanal an activity that represents the expression of hidden impulses and desires by channelling them into socially acceptable forms
References in periodicals archive ?
iv) If f is differentiable at t, then f ([sigma](t)) = f (t) + [mu](t)[f.
The subdifferential [partial derivative]f(x) of an almost everywhere Frechet differentiable function f: A [right arrow] R, around a point x [member of] A, admits an equivalent representation as convex hull of the limit normals of f at the point x.
Let z be any differentiable function and define w by the Riccati substitution
x](t), x) is differentiable at [lambda] = 0 uniformly in t, see [14, Definition 2 and Proposition 2].
infinity]] be a harmonic sequence of polynomials, let f(t) be n-time differentiable on the closed interval [a, b] such that [m.
is differentiable, nondecreasing, g(t) [less than or equal to] t and [lim.
n] be a differentiable stochastic process, a: [0, [infinity]) x [R.
He shows that the properties for the different types of domains differ significantly from each other, and depend on the degree to which the integral density is differentiable.
Keywords and Phrases: Ostrowski and Gruss type inequalities, Differentiable functions, Estimates, Taylor's formula, Lagrange form of reminder.
We assume f is several times continuously differentiable over the unit sphere U, with the precise order of differentiability to be specified later.
Service providers are looking to vendors for technology and equipment they can use to build an IP network that is more reliable, more scalable, and rich with service options for differentiable private IP services like VPLS and MPLS VPNs.