forced oscillation

Forced oscillation

A response of a mechanical or electrical system in reaction to an external signal.

A simple electrical RLC circuit (illus. a) consists of a resistor with resistance R (measured in ohms), an inductor with inductance L (measured in henrys), and a capacitor with capacitance C (measured in farads). The dynamics relating the input voltage, u(t), to the current, y(t), passing through the resistor are described by Eq. (1). Equation (1) (1)  states that the input voltage is equal to the sum of the voltage across the inductor, the voltage across the resistor, and the voltage across the capacitor, where the voltage across the inductor is the product of its inductance (L) and the rate of change of the current through the inductor; the voltage across the resistor is the product of its resistance (R) and the current passing through it; and the voltage across the capacitor is the integral over time of the current through the capacitor (that is, the charge on the capacitor plates) divided by the capacitance (C).

Examples of forced oscillationenlarge picture
Examples of forced oscillation

A fundamental property of differential equations states that the response of a differential equation to a periodic input can be decomposed as a sum of two responses. The first one, called the zero-input response or free oscillation, is due to initial energy stored in the circuit and decays eventually to zero. The second one, due to the voltage input u(t), converges to a periodic signal with the same frequency as u(t). The latter is referred to as the forced oscillation or the steady-state response. The decaying rate of the free oscillation depends on the time constant of the circuit which is determined by the values of R, L, and C and the structure of the circuit. See Time constant

Similarly, an analogous mechanical system, a simple spring-mass-damper system (illus. b), consists of a body with mass M, which is attached to a wall by a spring with spring constant k, and rests on a horizontal surface over which it moves with friction coefficient r. The dynamic equation that relates the force applied to the body, f(t), to the body's displacement, y(t), is given by Eq. (2).

Equation (2) states that the force applied to the body equals the sum of the three quantities: the product of the body's mass and its acceleration, the negative of the frictional force, and the negative of the force exerted by the spring. Here, the negative of the frictional force is the product of the coefficient of friction and the body's velocity, and the negative of the force exerted by the spring is the product of the spring constant and the body's displacement. Moreover, the body's velocity is the first derivative of its displacement with respect to time, and its acceleration is the second derivative of its displacement with respect to time.

Analogous to the RLC circuit case, application of a sinusoidal force f(t) results eventually in a forced oscillation of the displacement y(t) that is also a sinusoidal function. The magnitude and the phase of the displacement y(t) depends on the complex mechanical impedance that is a function of the mass (M), the spring constant (k), and the friction coefficient (r). The exact evaluation is similar to the RLC circuit case. See Mechanical impedance, Oscillation, Vibration

forced oscillation

[¦fȯrst ‚äs·ə′lā·shən]
An oscillation produced in a simple oscillator or equivalent mechanical system by an external periodic driving force. Also known as forced vibration.
References in periodicals archive ?
The impulse oscillometric method is a Forced Oscillation Technique (FOT) that is capable of measuring respiratory impedance in terms of the Resistance (R) and Reactance (X) of the lungs at frequencies between 5 Hz-25 Hz [10].
Feng: Forced Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales, Electron.
The task is to consider the properties of forced oscillation of the first and second mass particles in a circular rough line with limited elongations, so the system becomes vibro-impact with one sided limited angular elongation.
A different approach, the forced oscillation technique (FOT), also is available to differentiate obstructive events from central apneic events.
It excludes less common tests like gas distribution, ventilatory drive, and forced oscillation, and topics requiring more than one chapter, like bronchoscopy.
Lung volume and lung function were evaluated using a plethysmograph, an instrument used to measure the amount of air in the lung, and via forced oscillation, a technique used to measure the resistance to air flow in the lungs.
This machine also detects central sleep apneas through the use of a forced oscillation technique.
Forty-eight hours after the last nebulization, we assessed serum IgE antibodies to OVA by enzyme-linked immunosorbent assay (ELISA) and airway inflammation and hyperresponsiveness by enumerating eosinophils in bronchoalveolar lavage fluid, whole-body barometric plethysmography, and a forced oscillation technique.
Forced oscillation of nth-order nonlinear differential equations.
With applications and examples, he describes traditional representations and stability analyses of linear MIMO systems, the performance and design of linear MIMO systems, one-frequency self-oscillation in nonlinear harmonically linear MIMO systems, forced oscillation and generalized frequency response characteristics of nonlinear MIMO systems, and absolute stability of nonlinear MIMO systems.
Measures from forced oscillation pneumography similarly showed improvement in pulmonary function.
This is a "quasiharmonic" equation: with [mu]=0, such an equation is a harmonic oscillation equation; while if [mu] [not equal to] 0 the right side plays the role of an forcing factor--we obtain a forced oscillation equation.