(redirected from gum elastic)
Also found in: Dictionary, Thesaurus, Medical.


any solid substance that upon vulcanizationvulcanization
, treatment of rubber to give it certain qualities, e.g., strength, elasticity, and resistance to solvents, and to render it impervious to moderate heat and cold.
..... Click the link for more information.
 becomes elastic; the term includes natural rubber (caoutchouccaoutchouc
, natural rubber obtained as a latex from various tropical plants, e.g., the Pará rubber tree. It is much more elastic than balata or gutta-percha. It is the most familiar and widely used of the natural rubbers.
..... Click the link for more information.
) and synthetic rubber. The term elastomer is sometimes used to designate synthetic rubber only and is sometimes extended to include caoutchouc as well.

Chemistry and Properties

All rubberlike materials are polymerspolymer
, chemical compound with high molecular weight consisting of a number of structural units linked together by covalent bonds (see chemical bond). The simple molecules that may become structural units are themselves called monomers; two monomers combine to form a dimer,
..... Click the link for more information.
, which are high molecular weight compounds consisting of long chains of one or more types of molecules, such as monomers. Vulcanization (or curing) produces chemical links between the loosely coiled polymeric chains; elasticity occurs because the chains can be stretched and the crosslinks cause them to spring back when the stress is released. Natural rubber is a polyterpene, i.e., it consists of isoprene molecules linked into loosely twisted chains. The monomer units along the backbone of the carbon chains are in a cis arrangement (see isomerisomer
, in chemistry, one of two or more compounds having the same molecular formula but different structures (arrangements of atoms in the molecule). Isomerism is the occurrence of such compounds. Isomerism was first recognized by J. J. Berzelius in 1827.
..... Click the link for more information.
) and it is this spatial configuration that gives rubber its highly elastic character. In gutta-perchagutta-percha
, natural latex obtained from Palaquium gutta and several other evergreen trees of East Asia. The latex, collected by felling or girdling the tree, is allowed to coagulate and is then washed, purified, and molded into bricks for shipping.
..... Click the link for more information.
, which is another natural polyterpene, the isoprene molecules are bonded in a trans configuration leading to a crystalline solid at room temperature. Unvulcanized rubber is soluble in a number of hydrocarbons, including benzene, toluene, gasoline, and lubricating oils.

Rubber is water repellent and resistant to alkalies and weak acids. Rubber's elasticity, toughness, impermeability, adhesiveness, and electrical resistance make it useful as an adhesive, a coating composition, a fiber, a molding compound, and an electrical insulator. In general, synthetic rubber has the following advantages over natural rubber: better aging and weathering, more resistance to oil, solvents, oxygen, ozone, and certain chemicals, and resilience over a wider temperature range. The advantages of natural rubber are less buildup of heat from flexing and greater resistance to tearing when hot.

Natural Rubber

Natural rubber is obtained from the milky secretion (latex) of various plants, but the only important commercial source of natural rubber (sometimes called Pará rubber) is the tree Hevea brasiliensis. The only other plant under cultivation as a commercial rubber source is guayuleguayule
, multibranched flowering evergreen shrub, Parthenium argentatum, native to the deserts of the SW United States and N Mexico. Growing to 3 ft (1 m) in height, the guayule has leaves and outer stems that are covered with silvery hairs; its small yellow-white
..... Click the link for more information.
, a shrub native to the arid regions of Mexico and the SW United States. To soften the rubber so that compounding ingredients can be added, the long polymer chains must be partially broken by mastication, mechanical shearing forces applied by passing the rubber between rollers or rotating blades. Thus, for most purposes, the rubber is ground, dissolved in a suitable solvent, and compounded with other ingredients, e.g., fillers and pigments such as carbon black for strength and whiting for stiffening; antioxidantsantioxidant,
substance that prevents or slows the breakdown of another substance by oxygen. Synthetic and natural antioxidants are used to slow the deterioration of gasoline and rubber, and such antioxidants as vitamin C (ascorbic acid), butylated hydroxytoluene (BHT), and
..... Click the link for more information.
; plasticizers, usually in the form of oils, waxes, or tars; accelerators; and vulcanizing agents. The compounded rubber is sheeted, extruded in special shapes, applied as coating or molded, then vulcanized. Most Pará rubber is exported as crude rubber and prepared for market by rolling slabs of latex coagulated with acid into thin sheets of crepe rubber or into heavier, firmly pressed sheets that are usually ribbed and smoked.

An increasing quantity of latex, treated with alkali to prevent coagulation, is shipped for processing in manufacturing centers. Much of it is used to make foam rubber by beating air into it before pouring it into a vulcanizing mold. Other products are made by dipping a mold into latex (e.g., rubber gloves) or by casting latex. Sponge rubber is prepared by adding to ordinary rubber a powder that forms a gas during vulcanization. Most of the rubber imported into the United States is used in tires and tire products; other items that account for large quantities are belting, hose, tubing, insulators, valves, gaskets, and footwear. Uncoagulated latex, compounded with colloidal emulsions and dispersions, is extruded as thread, coated on other materials, or beaten to a foam and used as sponge rubber. Used and waste rubber may be reclaimed by grinding followed by devulcanization with steam and chemicals, refining, and remanufacture.

Synthetic rubber

The more than one dozen major classes of synthetic rubber are made of raw material derived from petroleum, coal, oil, natural gas, and acetylene. Many of them are copolymers, i.e., polymers consisting of more than one monomer. By changing the composition it is possible to achieve specific properties desired for special applications. The earliest synthetic rubbers were the styrene-butadiene copolymers, Buna S and SBR, whose properties are closest to those of natural rubber. SBR is the most commonly used elastomer because of its low cost and good properties; it is used mainly for tires. Other general purpose elastomers are cis-polybutadiene and cis-polyisoprene, whose properties are also close to that of natural rubber.

Among the specialty elastomers are copolymers of acrylonitrile and butadiene that were originally called Buna N and are now known as nitrile elastomers or NBR rubbers. They have excellent oil resistance and are widely used for flexible couplings, hoses, and washing machine parts. Butyl rubbers are copolymers of isobutylene and 1.3% isoprene; they are valuable because of their good resistance to abrasion, low gas permeability, and high dielectric strength. Neoprene (polychloroprene) is particularly useful at elevated temperatures and is used for heavy-duty applications. Ethylene-propylene rubbers (RPDM) with their high resistance to weathering and sunlight are used for automobile parts, hose, electrical insulation, and footwear. Urethane elastomers are called spandex and they consist of urethane blocks and polyether or polyester blocks; the urethane blocks provide strength and heat resistance, the polyester and polyether blocks provide elasticity; they are the most versatile elastomer family because of their hardness, strength, oil resistance, and aging characteristics. They have replaced rubber in elasticized materials. Other uses range from airplane wheels to seat cushions. Other synthetics are highly oil-resistant, but their high cost limits their use. Silicone rubbers are organic derivatives of inorganic polymers, e.g., the polymer of dimethysilanediol. Very stable and flexible over a wide temperature range, they are used in wire and cable insulation.


Pre-Columbian peoples of South and Central America used rubber for balls, containers, and shoes and for waterproofing fabrics. Mentioned by Spanish and Portuguese writers in the 16th cent., rubber did not attract the interest of Europeans until reports about it were made (1736–51) to the French Academy of Sciences by Charles de la Condamine and François Fresneau. Pioneer research in finding rubber solvents and in waterproofing fabrics was done before 1800, but rubber was used only for elastic bands and erasers, and these were made by cutting up pieces imported from Brazil. Joseph Priestley is credited with the discovery c.1770 of its use as an eraser, thus the name rubber.

The first rubber factory in the world was established near Paris in 1803, the first in England by Thomas Hancock in 1820. Hancock devised the forerunner of the masticator (the rollers through which the rubber is passed to partially break the polymer chains), and in 1835 Edwin Chaffee, an American, patented a mixing mill and a calender (a press for rolling the rubber into sheets).

In 1823, Charles Macintosh found a practical process for waterproofing fabrics, and in 1839 Charles Goodyear discovered vulcanization, which revolutionized the rubber industry. In the latter half of the 19th cent. the demand for rubber insulation by the electrical industry and the invention of the pneumatic tire extended the demand for rubber. In the 19th cent. wild rubber was harvested in South and Central America and in Africa; most of it came from the Pará rubber tree of the Amazon basin.

Despite Brazil's legal restrictions, seeds of the tree were smuggled to England in 1876. The resultant seedlings were sent to Ceylon (Sri Lanka) and later to many tropical regions, especially the Malay area and Java and Sumatra, beginning the enormous East Asian rubber industry. Here the plantations were so carefully cultivated and managed that the relative importance of Amazon rubber diminished. American rubber companies, as a step toward diminishing foreign control of the supply, enlarged their plantation holdings in Liberia and in South and Central America.

During World War I, Germany made a synthetic rubber, but it was too expensive for peacetime use. In 1927 a less costly variety was invented, and in 1931 neoprene was made, both in the United States. German scientists developed Buna rubber just prior to World War II. When importation of natural rubber from the East Indies was cut off during World War II, the United States began large-scale manufacture of synthetic rubber, concentrating on Buna S. Today synthetic rubber accounts for about 60% of the world's rubber production.


See P. W. Allen, Natural Rubber and the Synthetics (1972); M. Morton, Rubber Technology (3d ed. 1987).


(organic chemistry)
A natural, synthetic, or modified high polymer with elastic properties and, after vulcanization, elastic recovery.

cutter, rubber

A soft brick, sometimes used for facework because of the facility with which it can be cut or rubbed down.


1. A highly resilient material, capable of recovering from large deformations quickly; manufactured from the juice of rubber trees as well as of other trees and plants.
2. Any of various synthetically produced materials having similar properties; an elastomer.
3. A cutter.


1. a cream to dark brown elastic material obtained by coagulating and drying the latex from certain plants, esp the tree Hevea brasiliensis
2. any of a large variety of elastomers produced by improving the properties of natural rubber or by synthetic means
3. a coarse file


Bridge Whist
a. a match of three games
b. the deal that wins such a match
References in periodicals archive ?
Gum elastic bougie-guided insertion of the ProSeal[TM] laryngeal mask airway is superior to the digital and introducer tool techniques.
The drawback of the gum elastic bougie technique is that the device itself has no distal sideports to allow for ventilation.
We read with great interest the recent letter of Abbas (1) regarding use of a gum elastic bougie (GEB) through Murphy's eye for difficult intubation.
Two attempts at insertion of a gum elastic bougie failed.
500gm roll), Disposable Drapes, Disposable Drawsheet, Disposable Needles, Disposable sheet, ECG electrode, ETT- Flexo-metallic, Examination gloves, Face Mask, Gauze than, Gum elastic Bougie, Intravenous canula with injection port, Lancets, Leucoplast (7.
Insertion techniques were not specified but were recorded and included index and non-index finger techniques (16), use of the PLMA metal introducer (16), 'railroading' over a gum elastic bougie (17) and insertion during jaw thrust with the cuff partially inflated (the technique most commonly used by the four named consultants).
After blind passage of a gum elastic bougie into the trachea, an 8 mm Mallinckrodt endotracheal tube was railroaded over the bougie and rotated 90[degrees] anticlockwise before passing through the vocal cords.
Contract awarded for ern warehouse stock - september cerclage wire, glycine, gum elastic introducer, catheter peritoneum, catheter swan ganz, thoracic, tapes ketonemia, circuit neonatal fluorescein tapes, cassettes histological ear suction cannulas, filters ported / / ll1