hydrogen peroxide

Also found in: Dictionary, Thesaurus, Medical, Legal, Acronyms, Wikipedia.

hydrogen peroxide,

chemical compound, H2O2, a colorless, syrupy liquid that is a strong oxidizing agent and, in water solution, a weak acid. It is miscible with cold water and is soluble in alcohol and ether. Although pure hydrogen peroxide is fairly stable, it decomposes into water and oxygen when heated above about 80°C;; it also decomposes in the presence of numerous catalysts, e.g., most metals, acids, or oxidizable organic materials. A small amount of stabilizer, usually acetanilide, is often added to it. Hydrogen peroxide has many uses. It is available for household use as a 3% (by weight) water solution; it is used as a mild bleaching agent and medicinally as an antiseptic. The 3% solution is sometimes called ten volume strength, since one volume of it releases ten volumes of oxygen when it decomposes. Hydrogen peroxide is available for commercial use in several concentrations. Highly concentrated solutions were first used in World War II by the military, e.g., in fuels for rockets and torpedoes. It is used as a bleaching agent for textiles, e.g., wool and silk, and in paper manufacture. It is also used in chemical manufacture. Hydrogen peroxide is prepared commercially by oxidation of alkylhydroanthraquinones and by electrolysis of ammonium bisulfate. It can also be prepared by reaction of barium peroxide with sulfuric acid and is prepared (with acetone) by oxidation of isopropanol. Hydrogen peroxide was discovered (1818) by L. J. Thenard.

Hydrogen Peroxide


H2O2, the simplest and most important peroxide. It is a transparent, colorless, and odorless liquid with a metallic taste, a boiling point of 150.2°C, and a density of 1.47 g/cm3 at 0°C. Hydrogen peroxide has a melting point of — 0.43°C and can be easily overcooled without solidification. Hydrogen peroxide is completely miscible with water and forms the crystalline hydrate H2O2 • 2H2O. Like water, it is a good solvent for many salts, with which it forms crystalline peroxyhydrates. Hydrogen peroxide was discovered in 1818 by L. J. Thénard.

Very pure hydrogen peroxide is stable, but in the presence of heavy metals and their ions, it decomposes into H2O and O2. Especially efficient catalysts for this decomposition are salts and complexes of iron, copper, and manganese as well as the enzyme catalase. The decomposition of hydrogen peroxide is an exothermic process that can be explosive. Depending on the conditions, hydrogen peroxide can either be a reducing agent or, more commonly, an oxidizing agent. As an oxidizing agent, it liberates, for example, iodine from iodide salts:

2K1 +H2O2 + H2SO4 = I2 + K2SO4 + 2H2O

As a reducing agent, it converts Mn(VII) to Mn(II):

2KMnO4 + 5H2O2 + 3H2SO4 = K2SO4 + 2MnSO4 + 5O2 + 8H2O

These reactions are used for quantitative analysis of hydrogen peroxide in solution.

The mechanism of the oxidation of various substances by hydrogen peroxide is complex. All these oxidations involve formation of the active intermediates HO2 and OH, which are stronger oxidizers than hydrogen peroxide itself. For example, hydrogen peroxide reacts with ferrous ions in solution:

Fe2+ + H2O2 = Fe3+ + OH + OH

Fenton’s reagent, which is widely used as an oxidizer of organic compounds, is a mixture of solutions of H2O2 and Fe(II) salts.

In the laboratory, hydrogen peroxide is prepared by treating metal peroxides, usually BaO2 or Na2O2, with cold, dilute acids. Industrial preparation involves electrolysis of sulfuric acid and subsequent hydrolysis of the resulting persulfuric acid, H2S2O8:

2H2SO4 → H2S2O8 + 2H+ + 2e

H2S2O8 + 2H2O = 2H2SO4 + H2O2

Hydrogen peroxide can also be industrially prepared by autoxi-dation of derivatives of anthraquinone and by oxidation of iso-propyl alcohol.

In nature, hydrogen peroxide is formed as an intermediate or side product in the oxidation of many coumpounds by atmospheric oxygen. Traces are found in the various forms of natural atmospheric precipitation. Hydrogen peroxide is formed in plant and animal cells, but its concentration is very low because hydrogen peroxide is decomposed rapidly by the action of the enzymes catalase and peroxidase and because it is rapidly taken up to oxidize organic compounds.

Highly concentrated hydrogen peroxide, upon decomposition over an oxide catalyst, gives a gaseous water-oxygen mixture, which can be heated to 700°C for use as a jet fuel. In the chemical industry, hydrogen peroxide is used as an oxidizing agent, as a starting material for obtaining many peroxides, as an initiator of polymerization, and as a bleach for silk, wool, feathers, and furs.

Among the wastes from chemical production, hydrogen peroxide has acquired special significance as a clean oxidizing agent, one that does not form toxic products and pollute the environment. The production rate of hydrogen peroxide in concentrations from 90 to 98 percent is increasing steadily: this highly concentrated form is stored in aluminum tanks, and sodium pyrophosphate, Na4P2O7, is usually used as a stabilizer. Hydrogen peroxide is not toxic, but its concentrated solutions cause burns upon contact with the skin, mucous membranes, and respiratory tract.

In medicine hydrogen peroxide is used as a disinfecting, deodorizing antiseptic. A 3-percent solution of hydrogen peroxide is used for rinsing and washing in stomatitis, tonsillitis, and gynecological diseases; sometimes it is also used for stopping nosebleeds. Superoxol is used when more concentrated solutions are required. Solutions and salves that contain hydrogen peroxide are also used as depigmenting agents.


Schumb, W., C. Satterfield, and R. Wentworth. Perekis’ vodoroda. Moscow, 1958. (Translated from English.)


hydrogen peroxide

[′hī·drə·jən pə′räk‚sīd]
(inorganic chemistry)
H2O2 Unstable, colorless, heavy liquid boiling at 158°C; soluble in water and alcohol; used as a bleach, chemical intermediate, rocket fuel, and antiseptic. Also known as peroxide.

hydrogen peroxide

a colourless oily unstable liquid, usually used in aqueous solution. It is a strong oxidizing agent used as a bleach for textiles, wood pulp, hair, etc., and as an oxidizer in rocket fuels. Formula: H2O2
References in periodicals archive ?
He used four groups treated with 30% hydrogen peroxide solutions at different pH values: 3.
In concordance, our study shows that the adjunctive usage of hydrogen peroxide with chlorhexidine is much more efficacious in reducing the aerosol load than chlorhexidine alone, because two of the microbial reservoirs have been targeted.
It was further stated that there was no appreciable reaction of nicotinic acid with hydrogen peroxide, but data were not provided.
1986) that bicarbonate anions can also react with hydrogen peroxide to generate peroxymonocarbonate ions (HC[O.
Solvay already runs two major hydrogen peroxide plants in AntwerpA and Thailand.
Project scope The scope of the project involves construction of a hydrogen peroxide plant and associated facilities.
For perspective, this is roughly 20 times more diluted than the hydrogen peroxide mixture available at drug stores.
The Johns Hopkins team placed the devices in single hospital rooms after routine cleaning to disperse a thin film of hydrogen peroxide across all exposed hospital equipment surfaces, as well as on floors and walls, said Trish Perl, an infectious disease specialist and the study's senior investigator.
Chem Resist Director Neil Williams says the hydrogen peroxide used by Bloodhound's rocket is extremely reactive and must be handled with great care.
While most whiteners use hydrogen peroxide as their active ingredient, PearlBrite uses 44% carbamide peroxide, which is essentially hydrogen peroxide compounded with urea.

Full browser ?