hyperbola


Also found in: Dictionary, Thesaurus, Legal, Wikipedia.

hyperbola

(hīpûr`bələ), plane curve consisting of all points such that the difference between the distances from any point on the curve to two fixed points (foci) is the same for all points. It is the conic sectionconic section
or conic
, curve formed by the intersection of a plane and a right circular cone (conical surface). The ordinary conic sections are the circle, the ellipse, the parabola, and the hyperbola.
..... Click the link for more information.
 formed by a plane cutting both nappes of the conecone
or conical surface,
in mathematics, surface generated by a moving line (the generator) that passes through a given fixed point (the vertex) and continually intersects a given fixed curve (the directrix).
..... Click the link for more information.
; it thus has two parts, or branches. The center of a hyperbola is the point halfway between its foci. The principal axis is the straight line through the foci. The vertices are the intersection of this axis with the curve. The transverse axis is the line segment joining the two vertices. The latus rectum is the chord through either focus perpendicular to the principal axis. The asymptotes are lines, in the same plane, which the curve approaches as it approaches infinity. An equilateral, or rectangular, hyperbola is one whose asymptotes are perpendicular. A second hyperbola may be drawn whose asymptotes are identical with those of the given hyperbola and whose principal axis is a perpendicular line through the center; the two hyperbolas thus related are called conjugate.

hyperbola

(hÿ-per -bŏ-lă) A type of conic section that has an eccentricity greater than one. See also orbit.

Hyperbola

The section of a right circular cone by a plane that intersects the cone on both sides of the apex.

Hyperbola

 

the curve of intersection of a circular cone with a plane cutting both of its nappes (Figure 1). A hyperbola may also be defined as the geometric locus of the points M in a plane, such that the difference of their distances from two fixed points F1 and F2 (foci of the hyperbola) in that plane is constant. If a coordinate system xOy is selected such as

Figure 1

that represented in Figure 2 (OF1 = OF2 = c), then the equation of the hyperbola assumes the form

(2a = F1M - F2M and b = Hyperbola. A hyperbola is a curve of the second order. Consisting of two infinite branches K1A1K1’ and K2A2K2’, it is symmetrical with respect to the F1F2 and B1B2 axes. The point O is the center of the hyperbola and the center of its symmetry. The segments A1A2 = 2a and B1B2= 2b are called, respectively, the transverse and conjugate axes of the hyperbola. The number e = c/a > 1 is the eccentricity of the hyperbola. The straight lines D1D1’ and D2D2’, whose equations are x = -a/e and x = a/e, are the directrixes of the hyperbola. The ratio of the distance of a

Figure 2

point on the hyperbola from the nearest focus to the distance from the nearest directrix is constant and equal to the eccentricity. The points A1 and A2 of the hyperbola’s intersection with the Ox axis are called its vertices. The straight lines y = ± b/a (represented by dashed lines in Figure 2) are the asymptotes of the hyperbola. The graph of the inverse proportionality y = k/x is a hyperbola.

hyperbola

[hī·pər·bə·lə]
(mathematics)
The plane curve obtained by intersecting a circular cone of two nappes with a plane parallel to the axis of the cone.

hyperbola

a conic section formed by a plane that cuts both bases of a cone; it consists of two branches asymptotic to two intersecting fixed lines and has two foci. Standard equation: x2/a2 -- y2/b2 = 1 where 2a is the distance between the two intersections with the x-axis and b = a&#221A(e2 -- 1), where e is the eccentricity
References in periodicals archive ?
Therefore, the hyperbola of each element begins from the mass of the element and Y = 1.
function for hyperbola and parabola on the sphere (ellipsoid) which we considered in paragraph 2.
Hence, the variation of shear stress with normal stress is small and the rectangular hyperbola model is not applicable to the [N.
This is due to the tangent of inclination of the virtual axis of a direct hyperbola in the first set is a little high.
These findings confirmed the results of earlier studies which reported that Equation 2 provides better fits to discounting data than the simple hyperbola (for a review, see Green & Myerson, 2004).
For each cross section, by placing the vertex of the hyperbola at the vertical axis passing through the die center, and choosing suitable intersections with the superellipse, the hyperbolic curve can be uniquely determined.
1 we see that the trajectory is a hyperbola with total deflection equal to 2R/[r.
For example, when McDowell (1981) examined the rate of self-injurious scratching by a 10-year-old boy as a function of the rate of verbal reprimands from family members, the relation was a hyperbola as predicted by Equation 5.
The dotted line EE in Figure 1 is the hyperbola representing the best combinations of mean and standard deviations that can be obtained forming portfolios, allowing short positions, of the individual industries.
j], is a hyperbola that shifts downward as n rises.
1]([Epsilon]) function form is a hyperbola with an applied strain [Epsilon], and [b.
e], then each hyperbola in a family will have its own asymptote.