inscribed polygon

inscribed polygon

[in¦skrībd ′päl·ə‚gän]
(mathematics)
A polygon that lies within a given circle or curve and whose vertices all lie on the circle or curve.
References in periodicals archive ?
Archimedes found that by increasing the number of sides of an inscribed polygon, the area of the polygon became closer to that of the circle.
He proves this by circumscribing a polygon about the circle and inscribing another inside the circle (as in proposition 33 above), then proving that the circumscribed polygon is greater than the triangle ABC and the inscribed polygon is less.
To calculate this area in the classroom, we inscribed polygons inside the circle, much as Antiphon did.