Magnetic Monopole

Also found in: Dictionary, Thesaurus, Wikipedia.

magnetic monopole

[mag′ned·ik ′män·ə‚pōl]
A hypothetical particle carrying magnetic charge; it would be a source for a magnetic field in the same way that a charged particle is a source for an electric field. Also known as monopole.

Magnetic Monopole


the laws of nature reveal a high degree of similarity between electric and magnetic fields, and the field equations established by J. Maxwell are the same for both. There is, however, a major difference: whereas particles with electric charges, positive and negative, are seen constantly in nature and create a Coulomb electric field in the surrounding space, neither positive nor negative magnetic charges have ever been found alone. A magnet always has two poles, one at each end—positive and negative and equal in magnitude. The magnetic field around the magnet is the field produced by both poles.

The laws of classical electrodynamics admit the existence of particles with a single magnetic pole—magnetic monopoles— and give specific equations for their field and motion. The laws contain no prohibitions that would rule out the existence of magnetic monopoles.

The situation is somewhat different in quantum mechanics. Consistent equations of motion can be constructed for a charged particle moving in the field of a magnetic monopole and for a magnetic monopole moving in the field of a particle only if the electric charge e of the particle and the magnetic charge jut of the magnetic monopole are related by the equation

Where ħ is Planck’s constant, c is the speed of light, and n is a positive or negative integer. This condition comes about because particles are represented in quantum mechanics as waves, and interference effects appear in the motion of particles of one type under the influence of particles of another type. If a magnetic monopole with magnetic charge μ exists, then formula (1) requires that all charged particles in its vicinity have a charge e equal to an integral multiple of the quantity ħc/2μ. Thus, electric charges must be quantized.

However, it is precisely the phenomenon that all observed charges are multiples of the electron charge that is one of the fundamental laws of nature. If a magnetic monopole existed, this law would have a natural explanation. No other explanation of the quantization of electric charge is known.

Taking e as the charge of an electron, the value of which is determined by the equation e2/ħc = 1/137, one may obtain from formula (1) the least magnetic charge μo of a monopole, defined by the equation Magnetic Monopole Thus, μo is much greater than e. It follows that the track of a fast magnetic monopole in a cloud chamber or bubble chamber should stand out against a background of the tracks of other particles. Although painstaking searches have been made for these tracks, no magnetic mono-poles have as yet been detected.

The magnetic monopole is a stable particle and cannot disappear until it encounters another monopole that has a magnetic charge equal in magnitude and opposite in sign. If magnetic monopoles are generated by the high-energy cosmic rays that continuously strike the earth, then they should be encountered everywhere on the earth’s surface. They have been sought, but they have not been found. It is not known whether this is because magnetic monopoles are generated only very infrequently or because they do not exist at all.


[Editor’s note: The hypothesis of the existence of the magnetic monopole—a particle that has a positive or a negative magnetic charge—was first advanced by P. A. M. Dirac in 1931. The magnetic monopole is therefore also known as Dirac’s mono-pole.]


Dirac, P. A. M. “Quantised Singularities in the Magnetic Field.” Proceedings of the Royal Society, series A, 1931, vol. 133, no. 821.
Devons, S. “Poiski magnitnogo monoplia.” Uspekhi fizicheskikh nauk, 1965, vol. 85, fasc. 4, pp. 755-60. (With a supplement by B. M. Bolotovskii, pp. 761-62.)
Shvinger, Iu. “Magnitnaia model’ materii.” Uspekhi fizicheskikh nauk, 1971, vol. 103, fasc. 2, pp. 355-65.
MonopoV Diraka. Moscow, 1970. (Collection of articles, translated from English; edited by B. M. Bolotovskii and Iu. D. Usachev.)
References in periodicals archive ?
Instead of continuing along this familiar path, suppose we define a more appropriate base-space for viewing nature, one which quite naturally expresses both wave and particle behavior, non-local forces, electric and magnetic monopoles and allows both human consciousness and human intention to influence physical reality.
RCMT is the theoretical basis of the discussion and strong interactions are regarded as interactions between magnetic monopoles which obey the laws derived from RCMT.
That seemed to indicate that magnetic monopoles were more abundant than they ought to be, in view of the continuing existence of the magnetic field of our galaxy.
According to the present models these magnetic fluxes are the values of the magnetic monopoles (MMPs).
min] of magnetic monopole and the mass m of electron:
Magnetic monopoles would be single north or south poles flying free.
Magnetic monopoles are hypothetical particles proposed by physicists that carry a single magnetic pole, either a magnetic north pole or south pole.
Among others, in 1931, the physicist Paul Dirac was led by his calculations to the conclusion that magnetic monopoles can exist at the end of tubes - called Dirac strings - that carry magnetic field.
courts to prevent the LHC from being turned on at all, asserting that the experiments posed a small risk of creating low-velocity micro black holes and theoretical particles such as strangelets, magnetic monopoles and vacuum bubbles.
He explains the action approach, including its relation to Maxwell's equation and Dirac fields, then examines continuous symmetries and conservation laws, magnetostatics, multivalued fields in superfluids and superconductors, magnetic monopoles, electric charge confinement, multivalued mapping from ideal crystals to crystals with defects, defect melting, relativistic mechanics in curvilinear coordinates, torsion and curvature from defects and embedding, mutivalued mapping, field equations of gravitation, fields of integer spin, particles with half-integer spins, covariant conservation gravitation of spinning matter as a gauge theory, evanescent properties of torsion in gravity, the teleparallel theory of gravitation embedding, and emerging gravity.
They also relate their model to the research of other pioneers including Seiberg, Witten, Harmuth, Barrett, Wheeler, Inomath, Rauscher, and Evans--especially regarding the magnetic monopoles that are postulated to play the same role in the conjugate or "magnetoelectric" world that electrical charges play in our everyday four dimensional, electromagnetic world (D-space).
At the same time there is still a vanishing magnetic field divergence, div B = 0, due to the experimental fact that no magnetic monopoles have so far been observed.