power plant

Also found in: Dictionary, Thesaurus, Acronyms, Wikipedia.
Related to power plant: Thermal power plant

power plant

[′pau̇·ər ‚plant]
(mechanical engineering)
Any unit that converts some form of energy into electrical energy, such as a hydroelectric or steam-generating station, a diesel-electric engine in a locomotive, or a nuclear power plant. Also known as electric power plant.

Power Plant


a power complex containing a steam engine (less often, a hydraulic or wind engine), machines to convert energy, such as electric generators and motors, and units that consume mechanical power. Depending on the purpose of the plant and the number of intermediate elements between the engine and the unit that consumes power, a power plant may be classified as a transportation, mobile, or stationary plant; it may be either simple or complex. Simple types include the power plants in motor vehicles, tractors, single-screw ships, and single-engine aircraft. Complex types include multiple-screw ships and multiengine aircraft, nuclear power plants, and spacecraft power plants. In power plants for vehicles, a propeller is the principal consumer of the mechanical power. In stationary and mobile power plants the units that consume the mechanical power include pumps, compressors, and the working elements of gasoline-powered saws and lawn mowers.

Power plant

A means for converting stored energy into work. Stationary power plants such as electric generating stations are located near sources of stored energy, such as coal fields or river dams, or are located near the places where the work is to be performed, as in cities or industrial sites. Mobile power plants for transportation service are located in vehicles, as the gasoline engines in automobiles and diesel locomotives for railroads. Power plants range in capacity from a fraction of a horsepower (hp) to over 106 kW in a single unit. Large power plants are assembled, erected, and constructed on location from equipment and systems made by different manufacturers. Smaller units are produced in manufacturing facilities.

Most power plants convert part of the stored raw energy of fossil fuels into kinetic energy of a spinning shaft. Some power plants harness nuclear energy. Elevated water supply or run-of-the-river energy is used in hydroelectric power plants. For transportation, the plant may produce a propulsive jet, as in some aircraft, instead of the rotary motion of a shaft. Other sources of energy, such as fuel cells, winds, tides, waves, geothermal, ocean thermal, nuclear fusion, photovoltaics, and solar thermal, have been of negligible commercial significance in the generation of power despite their magnitudes. See Energy sources

There is no practical way of storing the mechanical or electrical output of a power plant in the magnitudes encountered in power plant applications, although several small-scale concepts have been researched. As of now, however, the output must be generated at the instant of its use. This results in wide variations in the loads imposed upon a plant. The capacity, measured in kilowatts or horsepower, must be available when the load is imposed. Much of the capacity may be idle during extended periods when there is no demand for output. Hence much of the potential output, measured as kilowatt-hours or horsepower-hours, cannot be generated because there is no demand for output. Kilowatts cannot be traded for kilowatt-hours, and vice versa. See Energy storage

The efficiency of energy conversion is vital in most power plant installations. With thermal power plants the basic limitations of thermodynamics fix the efficiency of converting heat into work. The cyclic standards of Carnot, Rankine, Otto, Diesel, and Brayton are the usual criteria on which heat-power operations are variously judged. Performance of an assembled power plant, from fuel to net salable or usable output, may be expressed as thermal efficiency (%); fuel consumption (lb, pt, or gal per hp-h or per kWh); or heat rate (Btu supplied in fuel per hp-h or per kWh). American practice uses high or gross calorific value of the fuel for measuring heat rate or thermal efficiency and differs in this respect from European practice, which prefers the low or net calorific value.

In scrutinizing data on thermal performance, it should be recalled that the mechanical equivalent of heat (100% thermal efficiency) is 2545 Btu/hp-h and 3413 Btu/kWh (3.6 megajoules/kWh). Modern steam plants in large sizes (75,000–1,300,000 kW units) and internal combustion plants in modest sizes (1000–20,000 kW) have little difficulty in delivering a kilowatt-hour for less than 10,000 Btu (10.55 MJ) in fuel (34% thermal efficiency). For condensing steam plants, the lowest fuel consumptions per unit output (8200–9000 Btu/kWh or 8.7–9.5 MJ/kWh) are obtained in plants with the best vacuums, regenerative-reheat cycles using eight stages of extraction feed heating, two stages of reheat, primary pressures of 4500 lb/in.2 gage or 31 megapascals gage (supercritical), and temperatures of 1150°F (620°C). An industrial plant cogenerating electric power with process steam is capable of having a thermal efficiency of 5000 Btu/kWh (5.3 MJ/kWh).

Combustion turbines used in combined cycle configurations have taken a dominant role in new power generation capacity. The reason is the higher efficiency and lower emissions of the power plant in this arrangement. The rapid pace in advances in combustion turbine technology (such as higher firing temperatures that improve the Brayton cycle efficiency) has driven combined cycle efficiency to nearly 60% when using natural gas as fuel, while attaining low emission rates. Low fuel consumption (5700–6000 Btu/kWh or 6.0–6.3 MJ/kWh) is obtained by using higher firing temperatures, steam cooling on the combustor and gas turbine blades, a reheat steam cycle with a three-pressure heat recovery steam generator, and higher pressure and temperature of the steam cycle. These conditions are balanced with the need to keep the exhaust flue gas temperature as low as practical to achieve low emissions.

Gas turbines in simple cycle configuration are used mostly for peaking service due to their fast startup capabilities. The advances in the gas turbines have also increased the efficiency of simple cycle operations. Recuperation of the classic Brayton cycle gas turbine (simple cycle) is an accepted method of improving cycle efficiency that involves the addition of a heat exchanger to recover some portion of the exhaust heat that otherwise would be lost. See Gas turbine

The nuclear power plant substitutes the heat of fission for the heat of combustion, and the consequent plant differs only in the method of preparing the thermodynamic fluid. It is otherwise similar to the usual thermal power plant. The pressure of a light-water reactor core is limited by material and safety considerations, while the temperature at which the steam is produced is determined by the core pressure. Because a nuclear reactor does not have the capability to superheat the steam above the core temperature, the steam temperature in a nuclear cycle is less than in a fossil cycle. See Electric power generation, Nuclear reactor

power plant

The complete installation of an aircraft engine, propeller, and all accessories required for its proper functioning.
References in periodicals archive ?
Quinones said that the although conservation efforts like green buildings, cogeneration and cash incentives from NYSERDA (New York State Energy and Development Authority) are an important source of energy, new power plants are critically needed.
Nothing happens quickly in the world of power plant construction.
The amount needed to fuel the two coal-fired power plants would be less than one percent of what nature adds each year.
And we almost have a direct tie-in to this power plant, so in case of emergency we have a reliable power plant available.
By the time Bush took office, even many environmentalists were searching for market-based "cap-and-trade" programs to curb power plant pollution rather than pursuing the traditional regimen of Clean Air Act enforcement.
Although construction costs for a gas-fired power plant are typically about a third less than for a coal-powered plant, the current high cost of natural gas defeats that initial advantage.
Typically, she says, this heating is done with natural gas, but the EERC researchers will try to use waste heat from the power plant itself.
The Southland's 14 power plants have worked full steam ahead since January to assist the state energy crisis.
The nation's nuclear power plants have for years operated under inadequate safety guidelines, and existing guidelines have been applied inconsistently, according to a report released last week by the General Accounting Office.
They are also far more expensive than a natural gas-fired power plant, and they need a suitable site: a lower reservoir, a suitable elevation gain, and a place for an upper reservoir.
Seepage from the dam and natural springs creates 16 CFS between the dam and the upper power plant, an area where the endangered Owens tui chub resides.