process technology

(redirected from 90 nanometers)

process technology

The particular manufacturing method used to make silicon chips, which is measured by how small the transistor is. The driving force behind the design of integrated circuits is miniaturization, and process technology boils down to the never-ending goal of smaller. It means more computing power per square inch, and smallness enables the design of ultra-tiny chips that can be placed almost anywhere.

Feature Size Measured in Nanometers
The size of the features (the elements that make up the structures on a chip) are measured in nanometers. A 22 nm process technology refers to features 22 nm or 0.022 µm in size. Also called a "technology node" and "process node," early chips were measured in micrometers (see table below).

Historically, the feature size referred to the length of the silicon channel between source and drain in field effect transistors (see FET). Today, the feature size is typically the smallest element in the transistor or the size of the gate.

From 1,000 Down to 90
The feature size of the 486 chip in 1989 was 1,000 nm (one micron). By 2003, it was 90 nm, reduced by a little less than one millionth of a meter. What may seem like a minuscule reduction took thousands of man years and billions of dollars worth of R&D. In the table below, note the dramatic reductions in the early years of semiconductors.

It's Not Always Smaller
In the semiconductor industry, the goal has always been to pack more transistors on the same square millimeter of silicon. At any given time, the smallest feature sizes are found on the latest, high-end CPUs chips that can cost several hundred dollars. However, 8-bit and 16-bit microcontrollers (MCUs) are used by the billions and sell for only a couple dollars. They have far fewer transistors and do not need to be so dense. A USD $2 microcontroller may have feature sizes similar to the high-end chips a decade or two earlier. See microcontroller.

A Miracle of Miniaturization
To understand how tiny these transistors elements are, using 10 nm feature sizes as an example, eight thousand of them laid side-by-side are equal to the cross section of a human hair. See half-node and active area.

Half a Micron Is Huge
In a span of five years, the feature size on these AMD chips was reduced from .8 to .35 microns. Half a micron may seem insignificant, but not in the microminiature world of semiconductor manufacturing. As features get smaller, the chip runs faster and uses less energy to perform the same processing. (Image courtesy of Advanced Micro Devices, Inc.)

Semiconductor Feature Sizes(approximate for all vendors)       Nanometers  MicrometersYear     (nm)        (µm)

 1957   120,000      120.0
 1963    30,000       30.0
 1971    10,000       10.0
 1974     6,000        6.0
 1976     3,000        3.0
 1982     1,500        1.5   **
 1985     1,300        1.3   **
 1989     1,000        1.0   **
 1993       600        0.6   **
 1996       350        0.35  **
 1998       250        0.25  **
 1999       180        0.18  **
 2001       130        0.13  **
 2003        90        0.09  **
 2005        65        0.065
 2008        45        0.045
 2010        32        0.032
 2012        22        0.022
 2014        14        0.014
 2017        10        0.010
 2018         7        0.007
 2019         5        0.005

 Method       1        0.001

 ** Still used for MCUs that do not
    require state-of-the-art
    technology (see  microcontroller).
References in periodicals archive ?
Each nanorobot is made from a flat, rectangular DNA origami sheet, 90 nanometers by 60 nanometers in size.
And one 90 nanometers wide traps blue and produces yellow.
Each wire measured, on average, 90 nanometers wide and 6 microns high.
For future technology size reductions to below 90 nanometers, the solution might be to partition the system such that the larger dimensioned ADC circuits are fabricated in a cost- effective process suited to the characteristics of the ADC circuit components.
Among them: Circuitry on telecom chips will shrink from 130 nanometers to a state-of-the-art 90 nanometers by the second half of this year.
NEC's test production of the transistor has shown the possibility that computer and mobile phone microchips can be downsized to one-18th of the current size in mass production, which feature a gate length of 90 nanometers.
In 2007, Fujitsu will crank up the clock on the Sparc64 VI to more than 3GHz using a process that is smaller than 90 nanometers (65 nanometers seems likely).
"With Philips' commitment to Synopsys' front-end design platform, we will jointly deliver state-of-the-art flows for 90 nanometers and below."
TSMC works extensively with industry-leading third-party IP providers to create the foundry industry's most comprehensive process-specific IP portfolio at technology nodes ranging from 0.25 micron to 90 nanometers. These process-proven cores provide designers with increased assurance of "right-the-first-time" silicon while reducing overall engineering and out-of-pocket expenses.
The bottom tier is made up of three layers--cuticle, then air, then cuticle--each roughly 90 nanometers (nm) thick.
Cu-08 will support circuits as small as 90 nanometers -- less than 1/1,000th the width of a human hair.